Timing of pubertal development and midlife blood pressure in men and women: A Mendelian randomization study

Author(s):  
Io Ieong Chan ◽  
Man Ki Kwok ◽  
C Mary Schooling

Abstract Introduction Observational studies suggest earlier puberty is associated with higher adulthood blood pressure (BP), but these findings have not been replicated using Mendelian randomization (MR). We examined this question sex-specifically using larger genome-wide association studies (GWAS) with more extensive measures of pubertal timing. Methods We obtained genetic instruments proxying pubertal maturation (age at menarche (AAM) or voice breaking (AVB)) from the largest published GWAS. We applied them to summary sex-specific genetic associations with systolic and diastolic BP z-scores, and self-reported hypertension in women (n=194174) and men (n=167020) from the UK Biobank, using inverse-variance weighting meta-analysis. We conducted sensitivity analyses using other MR methods, including multivariable MR adjusted for childhood obesity proxied by body mass index (BMI). We used late pubertal growth as a validation outcome. Results AAM (beta per one-year later = -0.030 [95% confidence interval (CI) -0.055, -0.005] and AVB (beta -0.058 [95% CI -0.100, -0.015]) were inversely associated with systolic BP independent of childhood BMI, as were diastolic BP (-0.035 [95% CI -0.060, -0.009] for AAM and -0.046 [95% CI -0.089, -0.004] for AVB) and self-reported hypertension (odds ratios 0.89 [95% CI 0.84, 0.95] for AAM and 0.87 [95% CI 0.79, 0.96] for AVB). AAM and AVB were positively associated with late pubertal growth, as expected. The results were robust to sensitivity analysis using other MR methods. Conclusion Timing of pubertal maturation was associated with adulthood BP independent of childhood BMI, highlighting the role of pubertal maturation timing in midlife BP.

2021 ◽  
Vol 11 (12) ◽  
pp. 1306
Author(s):  
Alice Giontella ◽  
Luca A. Lotta ◽  
John D. Overton ◽  
Aris Baras ◽  
Andrea Sartorio ◽  
...  

Thyroid function has a widespread effect on the cardiometabolic system. However, the causal association between either subclinical hyper- or hypothyroidism and the thyroid hormones with blood pressure (BP) and cardiovascular diseases (CVD) is not clear. We aim to investigate this in a two-sample Mendelian randomization (MR) study. Single nucleotide polymorphisms (SNPs) associated with thyroid-stimulating hormone (TSH), free tetraiodothyronine (FT4), hyper- and hypothyroidism, and anti-thyroid peroxidase antibodies (TPOAb), from genome-wide association studies (GWAS), were selected as MR instrumental variables. SNPs–outcome (BP, CVD) associations were evaluated in a large-scale cohort, the Malmö Diet and Cancer Study (n = 29,298). Causal estimates were computed by inverse-variance weighted (IVW), weighted median, and MR-Egger approaches. Genetically increased levels of TSH were associated with decreased systolic BP and with a lower risk of atrial fibrillation. Hyperthyroidism and TPOAb were associated with a lower risk of atrial fibrillation. Our data support a causal association between genetically decreased levels of TSH and both atrial fibrillation and systolic BP. The lack of significance after Bonferroni correction and the sensitivity analyses suggesting pleiotropy, should prompt us to be cautious in their interpretation. Nevertheless, these findings offer mechanistic insight into the etiology of CVD. Further work into the genes involved in thyroid functions and their relation to cardiovascular outcomes may highlight pathways for targeted intervention.


2021 ◽  
Author(s):  
Kailin Xia ◽  
Linjing Zhang ◽  
Lu Tang ◽  
Tao Huang ◽  
Dongsheng Fan

Abstract Background Observational studies have suggested a close but controversial relationship between blood pressure (BP) and amyotrophic lateral sclerosis (ALS). However, it remains unclear whether this association is causal. The authors employed a bidirectional two-sample Mendelian randomization (MR) approach to investigate whether there is a causal relationship between BP and ALS. Genetic proxies for systolic blood pressure (SBP), diastolic blood pressure (DBP), antihypertension drugs (AHDs), ALS, and their corresponding genome-wide association studies (GWAS) summary datasets were obtained from the updated largest studies. Inverse variance weighted (IVW) method was adopted as the main approach to examine the effect of BP on ALS and four other MR methods for sensitivity analyses. To exclude the interference between SBP and DBP, multivariable MR was used. Results We found that genetically determined increased DBP was a protective factor for ALS (OR = 0.978, 95% CI 0.960–0.996, P = 0.017), and increased SBP was an independent risk factor for ALS (OR = 1.014, 95% CI 1.003–1.025, P = 0.015). The high level of targeted protein of Calcium channel blocker (CCB) showed a causative relationship with ALS (OR = 0.985, 95% CI 0.971-1.000, P = 0.049). No evidence was revealed that ALS caused results change of BP measurements. Conclusions This study demonstrated that an increase in DBP is a protective factor for ALS, and increased SBP is independently risk for ALS, which may be related to sympathetic excitability. Blood pressure management is important in ALS, in which CCB may be a promising candidate.


Author(s):  
Fernando Pires Hartwig ◽  
Kate Tilling ◽  
George Davey Smith ◽  
Deborah A Lawlor ◽  
Maria Carolina Borges

Abstract Background Two-sample Mendelian randomization (MR) allows the use of freely accessible summary association results from genome-wide association studies (GWAS) to estimate causal effects of modifiable exposures on outcomes. Some GWAS adjust for heritable covariables in an attempt to estimate direct effects of genetic variants on the trait of interest. One, both or neither of the exposure GWAS and outcome GWAS may have been adjusted for covariables. Methods We performed a simulation study comprising different scenarios that could motivate covariable adjustment in a GWAS and analysed real data to assess the influence of using covariable-adjusted summary association results in two-sample MR. Results In the absence of residual confounding between exposure and covariable, between exposure and outcome, and between covariable and outcome, using covariable-adjusted summary associations for two-sample MR eliminated bias due to horizontal pleiotropy. However, covariable adjustment led to bias in the presence of residual confounding (especially between the covariable and the outcome), even in the absence of horizontal pleiotropy (when the genetic variants would be valid instruments without covariable adjustment). In an analysis using real data from the Genetic Investigation of ANthropometric Traits (GIANT) consortium and UK Biobank, the causal effect estimate of waist circumference on blood pressure changed direction upon adjustment of waist circumference for body mass index. Conclusions Our findings indicate that using covariable-adjusted summary associations in MR should generally be avoided. When that is not possible, careful consideration of the causal relationships underlying the data (including potentially unmeasured confounders) is required to direct sensitivity analyses and interpret results with appropriate caution.


BMC Medicine ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Shiu Lun Au Yeung ◽  
Jie V Zhao ◽  
C Mary Schooling

Abstract Background Observational studies suggest poorer glycemic traits and type 2 diabetes associated with coronavirus disease 2019 (COVID-19) risk although these findings could be confounded by socioeconomic position. We conducted a two-sample Mendelian randomization to clarify their role in COVID-19 risk and specific COVID-19 phenotypes (hospitalized and severe cases). Method We identified genetic instruments for fasting glucose (n = 133,010), 2 h glucose (n = 42,854), glycated hemoglobin (n = 123,665), and type 2 diabetes (74,124 cases and 824,006 controls) from genome wide association studies and applied them to COVID-19 Host Genetics Initiative summary statistics (17,965 COVID-19 cases and 1,370,547 population controls). We used inverse variance weighting to obtain the causal estimates of glycemic traits and genetic predisposition to type 2 diabetes in COVID-19 risk. Sensitivity analyses included MR-Egger and weighted median method. Results We found genetic predisposition to type 2 diabetes was not associated with any COVID-19 phenotype (OR: 1.00 per unit increase in log odds of having diabetes, 95%CI 0.97 to 1.04 for overall COVID-19; OR: 1.02, 95%CI 0.95 to 1.09 for hospitalized COVID-19; and OR: 1.00, 95%CI 0.93 to 1.08 for severe COVID-19). There were no strong evidence for an association of glycemic traits in COVID-19 phenotypes, apart from a potential inverse association for fasting glucose albeit with wide confidence interval. Conclusion We provide some genetic evidence that poorer glycemic traits and predisposition to type 2 diabetes unlikely increase the risk of COVID-19. Although our study did not indicate glycemic traits increase severity of COVID-19, additional studies are needed to verify our findings.


2021 ◽  
Author(s):  
Ferris Alaa Ramadan ◽  
Katherine Ellingson ◽  
Yann Klimentidis

Background. Studies suggest that body composition can be improved through physical activity (PA) independently of dietary interventions. A separate line of evidence suggests that PA may reduce high-risk visceral adipose tissue (VAT), without clinically meaningful weight change. Genome-wide association studies have previously identified genetic markers associated with PA behaviors and may provide an opportunity to evaluate hypothesized causal relationships with body composition. Methods. We performed a Mendelian randomization (MR) study to test the incremental benefits of various PA exposures on body composition outcomes as assessed by anthropometric indices, lean body mass (LBM) (kg), body fat (%), and VAT (kg). Genetic instruments were identified for both self-reported and accelerometer-measured PA, including sedentary behavior. Outcomes included anthropometric and dual-energy X-ray absorptiometry measures of adiposity, extracted from the UK Biobank and the largest publicly available consortia. Multivariable MR (MVMR) included educational attainment as a covariate to address potential confounding. Sensitivity analyses were evaluated for weak instrument bias and pleiotropic effects.Results. We did not identify associations between genetically-predicted sedentary behavior (self-reported or accelerometer) and body composition outcomes in MVMR analyses. All analyses for self-reported moderate PA were null for body composition outcomes, including BMI, LBM and VAT. Genetically-predicted PA at higher intensities was protective against VAT in MR and MVMR analyses of both accelerometer-measured vigorous PA (MVMR β = -0.15, 95% Confidence Interval (CI): -0.24, -0.07, p<0.001) and self-reported participation in strenuous sports or other exercises (MVMR β = -0.27, 95%CI: -0.52, -0.01, p=0.034), and was robust across several sensitivity analyses. Conclusions. We did not identify evidence of a causal relationship between genetically-predicted PA and body composition, with the exception of a putatively protective effect of higher-intensity PA on VAT. Protective effects of PA against VAT may support prior evidence of biological pathways through which PA decreases risk of downstream cardiometabolic diseases.


2021 ◽  
Author(s):  
Kailin Xia ◽  
Linjing Zhang ◽  
Gan Zhang ◽  
Yajun Wang ◽  
Tao Huang ◽  
...  

Abstract Background Observational studies have suggested that telomere length is associated with amyotrophic lateral sclerosis (ALS). However, it remains unclear whether this association is causal. We employed a two-sample Mendelian randomization (MR) approach to explore the causal relationship between leukocyte telomere length (LTL) and ALS based on the most cited and most recent and largest LTL genome-wide association studies (GWASs) that measured LTL with the Southern blot method (n = 9190) and ALS GWAS summary data (n = 80,610). We adopted the inverse variance weighted (IVW) method to examine the effect of LTL on ALS and used the weighted median method, simple median method, MR Egger method and MR PRESSO method to perform sensitivity analyses. Results We found that genetically determined longer LTL was inversely associated with the risk of ALS (OR = 0.846, 95% CI: 0.744–0.962, P = 0.011), which was mainly driven by rs940209 in the OBFC1 gene, suggesting a potential effect of OBFC1 on ALS. In sensitivity analyses, that was confirmed in MR Egger method (OR = 0.647,95% CI = 0.447–0.936, P = 0.050), and a similar trend was shown with the weighted median method (OR = 0.893, P = 0.201) and simple median method (OR = 0.935 P = 0.535). The MR Egger analyses did not suggest directional pleiotropy, showing an intercept of 0.025 (P = 0.168). Neither the influence of instrumental outliers nor heterogeneity was found. Conclusions Our results suggest that genetically predicted longer LTL has a causal relationship with a lower risk of ALS and underscore the importance of protecting against telomere loss in ALS.


2020 ◽  
Author(s):  
Jingshu Wang ◽  
Qingyuan Zhao ◽  
Jack Bowden ◽  
Gilbran Hemani ◽  
George Davey Smith ◽  
...  

Over a decade of genome-wide association studies have led to the finding that significant genetic associations tend to spread across the genome for complex traits. The extreme polygenicity where "all genes affect every complex trait" complicates Mendelian Randomization studies, where natural genetic variations are used as instruments to infer the causal effect of heritable risk factors. We reexamine the assumptions of existing Mendelian Randomization methods and show how they need to be clarified to allow for pervasive horizontal pleiotropy and heterogeneous effect sizes. We propose a comprehensive framework GRAPPLE (Genome-wide mR Analysis under Pervasive PLEiotropy) to analyze the causal effect of target risk factors with heterogeneous genetic instruments and identify possible pleiotropic patterns from data. By using summary statistics from genome-wide association studies, GRAPPLE can efficiently use both strong and weak genetic instruments, detect the existence of multiple pleiotropic pathways, adjust for confounding risk factors, and determine the causal direction. With GRAPPLE, we analyze the effect of blood lipids, body mass index, and systolic blood pressure on 25 disease outcomes, gaining new information on their causal relationships and the potential pleiotropic pathways.


2021 ◽  
Vol 12 ◽  
Author(s):  
Peng-Fei Wu ◽  
Xing-Hao Zhang ◽  
Ping Zhou ◽  
Rui Yin ◽  
Xiao-Ting Zhou ◽  
...  

BackgroundPrevious observational studies have suggested that associations exist between growth differentiation factor 15 (GDF-15) and neurodegenerative diseases. We aimed to investigate the causal relationships between GDF-15 and Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS).MethodsUsing summary-level datasets from genome-wide association studies of European ancestry, we performed a two-sample Mendelian randomization (MR) study. Genetic variants significantly associated (p < 5 × 10–8) with GDF-15 were selected as instrumental variables (n = 5). An inverse-variance weighted method was implemented as the primary MR approach, while weighted median, MR–Egger, leave-one-out analysis, and Cochran’s Q-test were conducted as sensitivity analyses. All analyses were performed using R 3.6.1 with relevant packages.ResultsMR provided evidence for the association of elevated GDF-15 levels with a higher risk of AD (odds ratio = 1.14; 95% confidence interval, 1.04–1.24; p = 0.004). In the reverse direction, Mendelian randomization suggested no causal effect of genetically proxied risk of AD on circulating GDF-15 (p = 0.450). The causal effects of GDF-15 on PD (p = 0.597) or ALS (p = 0.120) were not identified, and the MR results likewise did not support the association of genetic liability to PD or ALS with genetically predicted levels of GDF-15. No evident heterogeneity or horizontal pleiotropy was revealed by multiple sensitivity analyses.ConclusionWe highlighted the role of GDF-15 in AD as altogether a promising diagnostic marker and a therapeutic target.


2021 ◽  
Vol 12 ◽  
Author(s):  
Haoxin Peng ◽  
Xiangrong Wu ◽  
Yaokai Wen ◽  
Yiyuan Ao ◽  
Yutian Li ◽  
...  

Background:Leisure sedentary behaviors (LSB) are widespread, and observational studies have provided emerging evidence that LSB play a role in the development of lung cancer (LC). However, the causal inference between LSB and LC remains unknown.Methods: We utilized univariable (UVMR) and multivariable two-sample Mendelian randomization (MVMR) analysis to disentangle the effects of LSB on the risk of LC. MR analysis was conducted with genetic variants from genome-wide association studies of LSB (408,815 persons from UK Biobank), containing 152 single-nucleotide polymorphisms (SNPs) for television (TV) watching, 37 SNPs for computer use, and four SNPs for driving, and LC from the International Lung Cancer Consortium (11,348 cases and 15,861 controls). Multiple sensitivity analyses were further performed to verify the causality.Results: UVMR demonstrated that genetically predisposed 1.5-h increase in LSB spent on watching TV increased the odds of LC by 90% [odds ratio (OR), 1.90; 95% confidence interval (CI), 1.44–2.50; p < 0.001]. Similar trends were observed for squamous cell lung cancer (OR, 1.97; 95%CI, 1.31–2.94; p = 0.0010) and lung adenocarcinoma (OR, 1.64; 95%CI 1.12–2.39; p = 0.0110). The causal effects remained significant after adjusting for education (OR, 1.97; 95%CI, 1.44–2.68; p < 0.001) and body mass index (OR, 1.86; 95%CI, 1.36–2.54; p < 0.001) through MVMR approach. No association was found between prolonged LSB spent on computer use and driving and LC risk. Genetically predisposed prolonged LSB was additionally correlated with smoking (OR, 1.557; 95%CI, 1.287–1.884; p < 0.001) and alcohol consumption (OR, 1.010; 95%CI, 1.004–1.016; p = 0.0016). Consistency of results across complementary sensitivity MR methods further strengthened the causality.Conclusion: Robust evidence was demonstrated for an independent, causal effect of LSB spent on watching TV in increasing the risk of LC. Further work is necessary to investigate the potential mechanisms.


2020 ◽  
Author(s):  
Di Liu ◽  
Qiuyue Tian ◽  
Jie Zhang ◽  
Haifeng Hou ◽  
Wei Wang ◽  
...  

Background In observational studies, 25 hydroxyvitamin D (25OHD) concentration has been associated with an increased risk of Coronavirus disease 2019 (COVID-19). However, it remains unclear whether this association is causal. Methods We performed a two-sample Mendelian randomization (MR) to explore the causal relationship between 25OHD concentration and COVID-19, using summary data from the genome-wide association studies (GWASs) and using 25OHD concentration-related SNPs as instrumental variables (IVs). Results MR analysis did not show any evidence of a causal association of 25OHD concentration with COVID-19 susceptibility and severity (odds ratio [OR]=1.136, 95% confidence interval [CI] 0.988-1.306, P=0.074; OR=0.889, 95% CI 0.549-1.439, P=0.632). Sensitivity analyses using different instruments and statistical models yielded similar findings, suggesting the robustness of the causal association. No obvious pleiotropy bias and heterogeneity were observed. Conclusion The MR analysis showed that there might be no linear causal relationship of 25OHD concentration with COVID-19 susceptibility and severity.


Sign in / Sign up

Export Citation Format

Share Document