scholarly journals Attribution Analysis of Seasonal Runoff in the Source Region of the Yellow River Using Seasonal Budyko Hypothesis

Land ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 542
Author(s):  
Guangxing Ji ◽  
Leying Wu ◽  
Liangdong Wang ◽  
Dan Yan ◽  
Zhizhu Lai

Previous studies mainly focused on quantifying the contribution rate of different factors on annual runoff variation in the source region of the Yellow River (SRYR), while there are few studies on the seasonal runoff variation. In this study, the monthly water storage and monthly actual evaporation of SRYR were calculated by the monthly ABCD model, and then a seasonal Budyko frame was constructed. Finally, the contribution rate of climatic and anthropic factors on the seasonal runoff variation in Tangnaihai hydrological station were quantitatively calculated. It turned out that: (1) The changing point of runoff data at Tangnaihai hydrological station is 1989. (2) The ABCD monthly hydrological model could well simulate the monthly runoff variation of Tangnaihai hydrological station. (3) Anthropic factors play a major role in runoff change in spring, summer, and winter, while climatic factors play a major role in runoff change in autumn.

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Erhui Li ◽  
Xingmin Mu ◽  
Guangju Zhao ◽  
Peng Gao ◽  
Hongbo Shao

Precipitation is very important to the formation of runoff, and studying of runoff variation and its response to precipitation has practical significance to sustainable utilization of water resources. The study used Mann-Kendall test, anomaly accumulation method, and precipitation elasticity of runoff method to analyze the changes in the relation of precipitation and runoff and the contribution of precipitation to runoff change in the Hekou-Longmen region (from 1957 to 2010), Huangfuchuan watershed (from 1954 to 2010), and Yanhe watershed (from 1952 to 2010) in the middle reaches of the Yellow River. The results showed that runoff appeared a significant decreasing trend(P=0.01)while it was not significant in precipitation in all study areas. In particular, the reductions of average annual runoff in the Hekou-Longmen region, Huangfuchuan watershed, and Yanhe watershed were 72.7%, 87.5%, and 32.2%, respectively, during 2000–2010 compared to the 1950s. There existed two abrupt change points of the runoff in the Hekou-Longmen region and Huangfuchuan watershed, which were detected in 1979 and 1998. But in the Yanhe watershed only one abrupt change point was found in 1996. The precipitation elasticities of runoff were 1.11, 1.09, and 1.26, respectively, and the contributions of precipitation on runoff reduction were 26.4%, 17.9%, and 31.6%, respectively, in the Hekou-Longmen region, Huangfuchuan watershed, and Yanhe watershed.


Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3418
Author(s):  
Dan Yan ◽  
Zhizhu Lai ◽  
Guangxing Ji

Assessing the contribution rates of climate change and human activities to the runoff change in the source area of the Yellow River can provide support for water management in the Yellow River Basin. This paper firstly uses a multiple linear regression method to evaluate the contribution rates of climate change and human activities to the vegetation change in the source area of the Yellow River. Next, the paper uses the Budyko hypothesis method to calculate the contribution rates of climatic factors (including precipitation, potential evaporation, and subsequent vegetation changes) and vegetation changes caused by human activities to the runoff change of the Tangnaihai Hydrometric Station. The results showed that: (1) the annual runoff and precipitation in the source area of the Yellow River have a downward trend, while the annual potential evaporation and NDVI (Normalized Difference Vegetation Index) show an increasing trend; (2) The contribution rates of climate change and human activities to the vegetation change in the source area of the Yellow River is 62.79% and 37.21%, respectively; (3) The runoff change became more and more sensitive to changes in climate and underlying surface characteristic parameters; (4) The contribution rates of climatic factors (including precipitation, potential evaporation, and subsequent vegetation changes) and vegetation changes caused by human activities to the runoff change at Tangnaihai Hydrological Station are 75.33% and 24.67%, respectively; (5) The impact of precipitation on runoff reduction is more substantial than that of potential evaporation.


Water ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1237 ◽  
Author(s):  
Caihong Hu ◽  
Li Zhang ◽  
Qiang Wu ◽  
Shan-e-hyder Soomro ◽  
Shengqi Jian

Runoff reduction in most river basins in China has become a hotpot in recent years. The Gushanchuan river, a primary tributary of the middle Yellow river, Northern China, showed a significant downward trend in the last century. Little is known regarding the relative contributions of changing environment to the observed hydrological trends and response on the runoff generation process in its watershed. On the basis of observed hydrological and meteorological data from 1965–2010, the Mann-Kendall trend test and climate elasticity method were used to distinguish the effects of climate change and human activities on runoff in the Gushanchuan basin. The results indicate that the runoff in the Gushanchuan Basin has experienced significant declines as large as 77% from 1965 to 2010, and a mutation point occurred around 1997; the contribution rate of climate change to runoff change is 12.9–15.1%, and the contribution rate of human activities to runoff change is 84.9–87.1%. Then we divided long-term data sequence into two stages around the mutation point, and analyzed runoff generation mechanisms based on land use and cover changes (LUCC). We found that the floods in the Gushanchuan Basin were still dominated by Excess-infiltration runoff, but the proportion in 1965–1997 and 1998–2010 decreased gradually (68.46% and 45.83% in turn). The proportion of Excess-storage runoff and Mixed runoff has increased, which means that the runoff is made up of more runoff components. The variation law of the LUCC indicates that the forest area increased by 49.61%, the confluence time increased by 50.42%, and the water storage capacity of the watershed increased by 30.35%.


2010 ◽  
Vol 56 (196) ◽  
pp. 215-224 ◽  
Author(s):  
Qiao Liu ◽  
Shiyin Liu ◽  
Yong Zhang ◽  
Xin Wang ◽  
Yingsong Zhang ◽  
...  

AbstractTemperate glaciers are more sensitive to climate changes than polar or continental glaciers, and can drive remarkable runoff variation in local water catchments. Here we present recent glacier shrinkage and runoff change for Hailuogou glacier, a typical monsoon temperate glacier on the east slope of Mount Gongga (Minya Konga), China. The surface area of Hailuogou glacier has decreased by 3.5% (0.92 km2) between 1966 (aerial photographs) and 2007 (ASTER images). Flow measurements at a stream gauge about 500 m down-glacier commencing in 1994 display a remarkable increase in annual runoff (mostly during July–September) since 1999. Annual runoff over the same period in a nonglacierized but forested subcatchment (9.17 km2) did not experience significant change. By separating the daily rainfall component from the daily total discharge, monthly catchment water-balance series were calculated for the period 1994–2005, which shows an increasing trend of glacier storage loss. We concluded that air-temperature rise (with a trend of +0.2°C (10 a)−1 between 1988 and 2005, recorded at nearby weather stations) has had an increased effect on glacier mass loss and river runoff change during the past 20 years.


Author(s):  
Dongying Yi ◽  
Yue Xu ◽  
Nan Wang ◽  
Xiaoyi Ma

The primary approach to realizing long-term runoff prediction involves combining a hydrological model with general circulation model. Previous studies on the Source area of the Yellow River were all based on the Coupled Model Intercomparison Project Phase 5 (CMIP5) data sets with defects in physical mechanisms. In this paper, the Beijing Climate Center Climate System Model (BCC-CSM2-MR) of CMIP6, which proved to perform well in arid and semi-arid regions, will be used to drive the Soil & Water Assessment Tool (SWAT) model and evaluate its applicability in runoff simulation at Tang Nahai Hydrological Station from 2011 to 2019. The occurrence of the extreme value of runoff, its change trend, and the year of abrupt change of runoff in the four Shared Socio-economic Pathway (SSP) scenarios (SSP1-2.6, 2-4.5, 3-7.0, and 5-8.5) during 2021-2100 were analyzed. The results show that: (1) the runoff simulation evaluation index of SWAT driven by BCC-CSM2-MR in the research area from 2011 to 2019 is excellent, and the runoff simulation in the future is reliable and effective. (2) only the average annual runoff in scenario 5-8.5 (708.5m /s) from 2021 to 2100 was significantly higher than that in 2011-2019. Other scenarios are close to or less than the annual runoff observed. Most importantly, the maximum and minimum annual runoff values under the four scenarios all occurred during 2060-2080, so the attribution analysis of runoff extremum during 2060-2080 is worth further study. (3) it is necessary to evaluate whether the existing reservoirs and hydropower stations in the Yellow River basin can reasonably regulate and utilize the annual runoff under scenario 5-8.5.


Sign in / Sign up

Export Citation Format

Share Document