scholarly journals Agrivoltaics: A Climate-Smart Agriculture Approach for Indian Farmers

Land ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1277
Author(s):  
Rakeshkumar Mahto ◽  
Deepak Sharma ◽  
Reshma John ◽  
Chandrasekhar Putcha

India is a leader when it comes to agriculture. A significant part of the country’s population depends on agriculture for livelihood. However, many of them face challenges due to using unreliable farming techniques. Sometimes the challenges increase to the extent that they commit suicide. Besides, India is highly populated, and its population is steadily increasing, requiring its government to grow its GDP and increase its energy supply proportionately. This paper reviews integrating solar farming with agriculture, known as Agrivoltaics, as a Climate-Smart Agriculture (CSA) option for Indian farmers. This study is further supported by the Strength, Weaknesses, Opportunities, and Threats (SWOT) analysis of agrivoltaics. Using the SWOT analysis, this article presents how agrivoltaics can make agriculture sustainable and reliable. This paper identifies rural electrification, water conservation, yield improvement, sustainable income generation, and reduction in the usage of pesticides as the strengths of agrivoltaics. Similarly, the paper presents weaknesses, opportunities, and threats to agrivoltaics in India. The research concludes with the findings that agrivoltaics have the potential of meeting multiple objectives such as meeting global commitments, offering employment, providing economic stability, increasing clean energy production capacity, conserving natural resources, and succeeding in several others. The paper also includes a discussion about the findings, suggestions, and implications of adopting agrivoltaics on a large scale in India.

Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2741 ◽  
Author(s):  
George Lavidas ◽  
Vengatesan Venugopal

At autonomous electricity grids Renewable Energy (RE) contributes significantly to energy production. Offshore resources benefit from higher energy density, smaller visual impacts, and higher availability levels. Offshore locations at the West of Crete obtain wind availability ≈80%, combining this with the installation potential for large scale modern wind turbines (rated power) then expected annual benefits are immense. Temporal variability of production is a limiting factor for wider adaptation of large offshore farms. To this end multi-generation with wave energy can alleviate issues of non-generation for wind. Spatio-temporal correlation of wind and wave energy production exhibit that wind and wave hybrid stations can contribute significant amounts of clean energy, while at the same time reducing spatial constrains and public acceptance issues. Offshore technologies can be combined as co-located or not, altering contribution profiles of wave energy to non-operating wind turbine production. In this study a co-located option contributes up to 626 h per annum, while a non co-located solution is found to complement over 4000 h of a non-operative wind turbine. Findings indicate the opportunities associated not only in terms of capital expenditure reduction, but also in the ever important issue of renewable variability and grid stability.


2020 ◽  
Vol 12 (24) ◽  
pp. 10575
Author(s):  
Vangelis Marinakis ◽  
Alexandros Flamos ◽  
Giorgos Stamtsis ◽  
Ioannis Georgizas ◽  
Yannis Maniatis ◽  
...  

Greece has historically been one of the most lignite-dependent countries in Europe, due to the abundant coal resources in the region of Western Macedonia and the municipality of Megalopolis, Arcadia (region of Peloponnese). However, a key part of the National Energy and Climate Plan is to gradually phase out the use of lignite, which includes the decommissioning of all existing lignite units by 2023, except the Ptolemaida V unit, which will be closed by 2028. This plan makes Greece a frontrunner among countries who intensively use lignite in energy production. In this context, this paper investigates the environmental, economic, and social state of Megalopolis and the related perspectives with regard to the energy transition, through the elaboration of a SWOT analysis, highlighting the strengths, weaknesses, opportunities, and threats of the municipality of Megalopolis and the regional unit of Arcadia. The analysis is based on four main pillars, namely “clean energy”, “smart agricultural production”, “sustainable tourism”, and “other (e.g., industry, technology, and education)”. The integration of the “Energy Efficiency First” principle, the mitigation of household energy poverty (especially in a region with district heating installations), and collectively driven energy actions for engaging and empowering younger generations (e.g., in the form of next-generation energy communities) are among the solutions that are expected to have a significant contribution towards Megalopolis’ just energy transition.


Author(s):  
Piet Eichholtz ◽  
Nils Kok ◽  
Mike Langen ◽  
Daan van Vulpen

AbstractRenewable energy production is one of the most important policy instruments to fight climate change. However, despite global benefits, renewable energy production entails some local challenges, such as requiring more space per unit production capacity. In this paper, we study the external effects of large-scale conventional and renewable electric power generation facilities on local house prices. We combine information of all coal, gas, and biomass plants, as well as all wind turbines in the Netherlands, with 1.5 million housing transactions over a period of 30 years. Using a difference-in-difference as well as a repeated sales model, we study the effects of facility openings and closings. Our results show negative external price effects for gas plants and wind turbines, but positive effects for biomass plants, conditionally upon ex-ante lower priced locations. The external effects of power generating facilities on local housing markets are important to consider, especially with the current focus of public policies on the expansion of renewable energy generation. Our paper is one of the first to present a large-scale study, using detailed information, and comparing several different energy sources in one framework.


Author(s):  
Yasmin Souza de Carvalho ◽  
Elizeu Moraes da Silva ◽  
Fabiana Rocha Pinto ◽  
David Barbosa de Alencar ◽  
Igor Felipe Oliveira Bezerra

The development of technologies for the generation of clean and sustainable energy has brought significant changes to the energy sector in Brazil and worldwide. The newest technology is piezoelectricity, which although it has been studied for years, has not yet gained its proper space in the national and international electrical matrices. With this in mind, the present work aims to describe the process of installing a prototype carpet using piezoelectric ceramics that, through a force applied by any individual, is capable of generating enough energy for the operation of a turnstile in a HEI from Manaus-AM. The application was tested by modeling applying mathematical equations in the working of the prototype developed by APC International. Different answers were obtained considering the different dimensions for the piezoelectric parts. However, it is understood that this energy production model, treated as a new technology, presents economic viability in its implementation. One of the results demonstrates that the smaller the ceramic piece, the greater the energy production and can be adapted over time to respond to large productions. Thus, it is concluded from the calculations made that piezoelectric ceramics is an excellent alternative for the production of clean energy on a small scale, in a short time, and in the long term can reach large scale.


2019 ◽  
Vol 4 (2) ◽  
Author(s):  
Zulkifli Aiyub Kadir ◽  
Bahagia Bahagia

<p>Humans have utilized landscape for  produces a diverse character of the wider area of the watershed. Agroforestry is a land management system in addressing the problems that arise due to changes in land use of soil and water conservation. The aim of the study was to analyze plant diversity in agroforestry practices that have services in the Krueng watershed landscape in Aceh watershed. Develop strategies in the Krueng Aceh DAS agroforestry service. This research was conducted in the upper, middle and downstream of the Krueng Aceh watershed, with a rapid method of Agro-Biodiversity Appraisal and SWOT. The results showed that the composition of the vegetation structure found in the study sites tended to vary with the diversity index of agroforestry that was currently in the upstream and middle of the Krueng Aceh watershed. Based on SWOT analysis, internal scores are 2.45 and external scores are 3.21. Agroforestry practices in the upper stream of Krueng Aceh watershed were dominated by <em>Aleurites moluccana</em>, <em>Areca cathecu</em>, and  <em>Averrhoa bilimbi</em> L  species with the highest INP in the upper stream of Krueng Aceh watershed. Vegetation at the middle stream of Krueng Aceh watershed dominated by <em>Areca cathecu,</em> <em>Lansium domesticum</em> and Musa<em> paradisiaca</em>.  </p>


Author(s):  
Hui Wei ◽  
Wenwu Zhao ◽  
Han Wang

Large-scale vegetation restoration greatly changed the soil erosion environment in the Loess Plateau since the implementation of the “Grain for Green Project” (GGP) in 1999. Evaluating the effects of vegetation restoration on soil erosion is significant to local soil and water conservation and vegetation construction. Taking the Ansai Watershed as the case area, this study calculated the soil erosion modulus from 2000 to 2015 under the initial and current scenarios of vegetation restoration, using the Chinese Soil Loess Equation (CSLE), based on rainfall and soil data, remote sensing images and socio-economic data. The effect of vegetation restoration on soil erosion was evaluated by comparing the average annual soil erosion modulus under two scenarios among 16 years. The results showed: (1) vegetation restoration significantly changed the local land use, characterized by the conversion of farmland to grassland, arboreal land, and shrub land. From 2000 to 2015, the area of arboreal land, shrub land, and grassland increased from 19.46 km2, 19.43 km2, and 719.49 km2 to 99.26 km2, 75.97 km2, and 1084.24 km2; while the farmland area decreased from 547.90 km2 to 34.35 km2; (2) the average annual soil erosion modulus from 2000 to 2015 under the initial and current scenarios of vegetation restoration was 114.44 t/(hm²·a) and 78.42 t/(hm²·a), respectively, with an average annual reduction of 4.81 × 106 t of soil erosion amount thanks to the vegetation restoration; (3) the dominant soil erosion intensity changed from “severe and light erosion” to “moderate and light erosion”, vegetation restoration greatly improved the soil erosion environment in the study area; (4) areas with increased erosion and decreased erosion were alternately distributed, accounting for 48% and 52% of the total land area, and mainly distributed in the northwest and southeast of the watershed, respectively. Irrational land use changes in local areas (such as the conversion of farmland and grassland into construction land, etc.) and the ineffective implementation of vegetation restoration are the main reasons leading to the existence of areas with increased erosion.


Author(s):  
Veronika Auer ◽  
Peter Rauch

AbstractThe indigenous hardwoods in German forests have a substantial ability to store carbon, and forestry reconstruction measures are anticipated to result in an increase in availability of hardwood on the wood market. Despite this, its material usage is declining with over two thirds of the harvested quantity being used for energy production. This study aims to identify policy measures and promising strategies for increasing hardwood utilisation using a combined policy Delphi-SWOT approach with literature review undertaken to identify the barriers and driving factors for an increase in its material use. The results were then ranked by a panel of experts and used as basis for the SWOT analysis, which was then applied to an extended SWOT approach. The resulting strategies were then discussed by the panel and ranked further in the 2nd and 3rd Delphi round. After three Delphi rounds, three strategies and associated policy recommendations were ranked as most effective by the experts: innovative hardwood products including manufacturing processes, research transfer and lobbying. This study provides both strategic analyses and effective strategies to stimulate the production of hardwood-based products and ends with a concise description of these strategies and policy recommendations, which are benchmarked against current literature and best practise examples.


2014 ◽  
Vol 986-987 ◽  
pp. 622-629
Author(s):  
Tian Long Shao ◽  
Jian Zhang ◽  
Xu Nan Zhao

As a kind of renewable clean energy, the constant access of wind power to power grids is bound to have a great impact on the power system. Based on the grid structure in Fuxin, this paper will state the difficulty of peak regulation and the matter of wasting wind power caused by the large-scale wind power integration and put forward some reasonable methods for using the wasting wind power in the heating in winter. The relevant results indicate that capacity of local consumption of wasting wind power can be improved. Under the circumstances, it can be conductive to solve the problem of wasting wind power results from the difficulty of peak regulation as well as inspire the power system planners.


2021 ◽  
Vol 28 (2) ◽  
pp. 271-280
Author(s):  
V. E. Messerle ◽  
A. S. Askarova ◽  
S. A. Bolegenova ◽  
V. Yu. Maximov ◽  
S. A. Bolegenova ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document