scholarly journals Priming by High Temperature Stress Induces MicroRNA Regulated Heat Shock Modules Indicating Their Involvement in Thermopriming Response in Rice

Life ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 291
Author(s):  
Akhilesh Kumar Kushawaha ◽  
Ambreen Khan ◽  
Sudhir Kumar Sopory ◽  
Neeti Sanan-Mishra

Rice plants often encounter high temperature stress, but the associated coping strategies are poorly understood. It is known that a prior shorter exposure to high temperature, called thermo-priming, generally results in better adaptation of the plants to subsequent exposure to high temperature stress. High throughput sequencing of transcript and small RNA libraries of rice seedlings primed with short exposure to high temperature followed by high temperature stress and from plants exposed to high temperature without priming was performed. This identified a number of transcripts and microRNAs (miRs) that are induced or down regulated. Among them osa-miR531b, osa-miR5149, osa-miR168a-5p, osa-miR1846d-5p, osa-miR5077, osa-miR156b-3p, osa-miR167e-3p and their respective targets, coding for heat shock activators and repressors, showed differential expression between primed and non-primed plants. These findings were further validated by qRT-PCR. The results indicate that the miR-regulated heat shock proteins (HSPs)/heat shock transcription factors (HSFs) may serve as important regulatory nodes which are induced during thermo-priming for plant survival and development under high temperatures.

1990 ◽  
Vol 17 (1) ◽  
pp. 37 ◽  
Author(s):  
C Blumenthal ◽  
F Bekes ◽  
CW Wrigley ◽  
EWR Barlow

The exposure of wheat (Triticum aestivum) coleoptiles to a transient high temperature stress results in the synthesis of a group of proteins known as the heat shock proteins (hsps). The appearance of these proteins is associated with a concomitant reduction in normal protein synthesis and has been correlated with the acquisition of thermotolerance (assessed as growth of coleoptiles). Pretreatment with a sublethal heat shock confers protection to a subsequent heat shock that would otherwise have been lethal. In addition, we find that increasing the time interval between the sublethal heat treatment and the subsequent heat shock from 0 to 72 h reduces the protective effect of the sublethal heat treatment considerably. The five cultivars examined (Sunelg, Sunco, Hartog, Vulcan, Halberd) showed differences in the degree of protection acquired, and in the length of time for which protection was maintained. Hartog was found to be the most thermotolerant, and acquired the greatest degree of protection from exposure to a sublethal heat treatment, but the duration of this acquired protection was shorter than in the remaining cultivars. Sunelg was most susceptible to a heat shock but the duration of acquired protection was the greatest.


Author(s):  
Jing Chang ◽  
Jianzhi Shi ◽  
Jianzhang Lin ◽  
Dehua Ji ◽  
Yan Xu ◽  
...  

AbstractGlobal warming is one of the key limiting factors affecting the cultivation of Pyropia haitanensis which is an economically important macroalgae species grown in southern China. However, the mechanism underlying the high-temperature tolerance of P. haitanensis remains largely unknown. In a previous study, we showed that the expression of the small heat shock protein 22 gene (Hsp22) is upregulated in P. haitanensis in response to high-temperature stress, but the associated regulatory mechanism was not fully elucidated. In this study, a transgenic Chlamydomonas reinhardtii expression system was used to functionally characterize P. haitanensis Hsp22. Our analyses indicated that the C-terminal of PhHsp22 is highly conserved and contains an A-crystal structure domain. A phylogenetic analysis revealed PhHsp22 is not closely related to small heat shock protein genes in other species. Additionally, PhHsp22 expression significantly increased at 3 and 6 h after initiating 33 °C treatment, which improved the survival rate of transgenic C. reinhardtii during the early stage of high-temperature treatment. The further transcriptome analysis revealed that PhHsp22 expression can promote pathways related to energy metabolism, metabolites metabolism, and protein homeostasis in transgenic C. reinhardtii cells exposed to high temperatures. Therefore, PhHsp22 may be crucial for the response of Pyropia species to high-temperature stress. Furthermore, this gene may be useful for breeding new high-temperature algal strains.


2014 ◽  
Vol 139 (6) ◽  
pp. 687-698 ◽  
Author(s):  
Jing Mao ◽  
Hongliang Xu ◽  
Caixia Guo ◽  
Jun Tong ◽  
Yanfang Dong ◽  
...  

Although tolerance to high temperature is crucial to the summer survival of Iris germanica cultivars in subtropical areas, few physiological studies have been conducted on this topic previously. To remedy this, this study explored the physiological response and expression of heat shock factor in four I. germanica cultivars with varying levels of thermotolerance. The plants’ respective degrees of high-temperature tolerance were evaluated by measuring the ratio and area of withered leaves under stress. Several physiological responses to high temperatures were investigated, including effects on chlorophyll, antioxidant enzymes, proline, and soluble protein content in the leaves of four cultivars. CaCl2 was sprayed on ‘Gold Boy’ and ‘Royal Crusades’ considered being sensitive to high temperatures to study if Ca2+ could improve the tolerance, and LaCl3 was sprayed on ‘Music Box’ and ‘Galamadrid’ with better high-temperature tolerance to test if calcium ion blocker could decrease their tolerance. Heat shock factor genes were partially cloned according to the conserved region sequence, and expression changes to high-temperature stress with CaCl2 or LaCl3 treatments were thoroughly analyzed. Results showed that high temperature is the primary reason for large areas of leaf withering. The ratio and area of withered leaves on ‘Music Box’ and ‘Galamadrid’ were smaller than ‘Gold Boy’ and ‘Royal Crusades’. CaCl2 slowed the degradation of chlorophyll content and increased proline and soluble protein in ‘Gold Boy’ and ‘Royal Crusades’ but had no significant effect on activating peroxidase or superoxide to improve high-temperature tolerance. Genetic expression of heat shock factor in ‘Gold Boy’ and ‘Royal Crusades’ was upregulated by Ca2+ at later stages of leaf damage under high-temperature stress. LaCl3 down-regulated the physiological parameters and expression level of heat shock factor in ‘Music Box’ and ‘Galamadrid’. These results suggest that different I. germanica cultivars have varying high-temperature tolerance and furthermore that Ca2+ regulates their physiological indicators and expression level of heat shock factor under stress.


2021 ◽  
Vol 12 ◽  
Author(s):  
S. Mukesh Sankar ◽  
C. Tara Satyavathi ◽  
Sharmistha Barthakur ◽  
Sumer Pal Singh ◽  
C. Bharadwaj ◽  
...  

The survival, biomass, and grain yield of most of the crops are negatively influenced by several environmental stresses. The present study was carried out by using transcript expression profiling for functionally clarifying the role of genes belonging to a small heat shock protein (sHSP) family in pearl millet under high-temperature stress. Transcript expression profiling of two high-temperature-responsive marker genes, Pgcp70 and PgHSF, along with physio-biochemical traits was considered to screen out the best contrasting genotypes among the eight different pearl millet inbred lines in the seedling stage. Transcript expression pattern suggested the existence of differential response among different genotypes upon heat stress in the form of accumulation of heat shock-responsive gene transcripts. Genotypes, such as WGI 126, TT-1, TT-6, and MS 841B, responded positively toward high-temperature stress for the transcript accumulation of both Pgcp70 and PgHSF and also indicated a better growth under heat stress. PPMI-69 showed the least responsiveness to transcript induction; moreover, it supports the membrane stability index (MSI) data for scoring thermotolerance, thereby suggesting the efficacy of transcript expression profiling as a molecular-based screening technique for the identification of thermotolerant genes and genotypes at particular crop growth stages. The contrasting genotypes, such as PPMI-69 (thermosusceptible) and WGI-126 and TT-1 (thermotolerant), are further utilized for the characterization of thermotolerance behavior of sHSP by cloning a PgHSP16.97 from the thermotolerant cv. WGI-126. In addition, the investigation was extended for the identification and characterization of 28 different HSP20 genes through a genome-wide search in the pearl millet genome and an understanding of their expression pattern using the RNA-sequencing (RNA-Seq) data set. The outcome of the present study indicated that transcript profiling can be a very useful technique for high-throughput screening of heat-tolerant genotypes in the seedling stage. Also, the identified PgHSP20s genes can provide further insights into the molecular regulation of pearl millet stress tolerance, thereby bridging them together to fight against the unpredicted nature of abiotic stress.


Sign in / Sign up

Export Citation Format

Share Document