scholarly journals Comparative Genome Analysis of Streptococcus suis Serotype 9 Isolates from China, The Netherland, and the U.K.

Life ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1324
Author(s):  
Huanhuan Yang ◽  
Jingjing Huang ◽  
Xiaotong Hu ◽  
Min Hu ◽  
Qiang Zhang ◽  
...  

Streptococcus suis (S. suis) is an important swine pathogen and an emerging zoonotic agent worldwide. Serotype 9 is the most prevalent serotype in several European countries but it is relatively rare in China. In this study, through the investigation of the serotypes of 279 S. suis strains isolated from China from 2015 to 2017, it was found that serotype 9 is the second most prevalent serotype (43 out of 279), behind serotype 2 (83 out of 279). Next, the 43 serotype 9 isolates were sequenced and compared with those from the Netherland (28) and the U.K. (eight). For the purpose of comparison, the strain D12 (GCA_000231905), which has completed genome sequences, was also incorporated. Phylogenetic tree analysis showed that the strains from China and the U.K. were heterogeneous. In contrast, all but one from the Netherland belonged to the same clade. The dominant clades of Chinese strains (33) and strains from the Netherland (27) were very similar. Both of them may have originated from the same strain about 70 years ago. Then, the distributions of virulence-associated genes and antibiotic resistance genes among different clades and sources were analyzed. By comparison, strains from the Netherland carried more virulence-associated genes and those from the U.K. had more antibiotic resistance genes. Additionally, some virulence-associated genes (salK and salR) and antibiotic resistance genes (lincomycin and spectinomycin) existed only in several Chinese strains. In conclusion, our data displayed the population characteristics and differences of S. suis serotype 9 between China and Europe, suggesting that they have taken different evolutionary paths.

2016 ◽  
Vol 4 (1) ◽  
Author(s):  
M. B. Couger ◽  
Anna Wright ◽  
Erika I. Lutter ◽  
Noha Youssef

We report here the draft genome sequences of five Pseudomonas aeruginosa isolates obtained from sputum samples from two cystic fibrosis patients with chronic colonization. These closely related strains harbor 225 to 493 genes absent from the P. aeruginosa POA1 genome and contain 178 to 179 virulence factors and 29 to 31 antibiotic resistance genes.


2021 ◽  
Vol 10 (5) ◽  
Author(s):  
Larry Feinstein ◽  
Kendra Batchelder ◽  
Lydia Tilley ◽  
Grace Stafford

ABSTRACT We report the draft genome sequences of 27 common pathogens collected from a northern Maine hospital in 2017. These were sequenced in order to determine temporal and biogeographical patterns of antibiotic gene distribution. A total of 908 antibiotic resistance genes, 848 insertion sequence elements, and 57 plasmids were identified.


2021 ◽  
Vol 10 (48) ◽  
Author(s):  
Kendra Batchelder ◽  
Liz Ward ◽  
Elsa Collins ◽  
Caitlin Miles ◽  
Stefania Palm ◽  
...  

Draft genome sequences of Escherichia coli and Pseudomonas aeruginosa strains collected from clinical infections were used to determine the prevalence of newly emerging antibiotic resistance genes in Maine. Comparisons between cefepime-resistant and -susceptible E. coli strains and imipenem-resistant and -susceptible P. aeruginosa strains are being conducted.


Antibiotics ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 16
Author(s):  
Adam Baraka ◽  
German M. Traglia ◽  
Sabrina Montaña ◽  
Marcelo E. Tolmasky ◽  
Maria Soledad Ramirez

Acinetobacter non-baumannii species are becoming common etiologic agents of nosocomial infections. Furthermore, clinical isolates belonging to this group of bacteria are usually resistant to one or more antibiotics. The current information about antibiotic resistance genes in the different A. non-baumannii species has not yet been studied as a whole. Therefore, we did a comparative study of the resistomes of A. non-baumannii pathogens based on information available in published articles and genome sequences. We searched the available literature and sequences deposited in GenBank to identify the resistance gene content of A. calcoaceticus, A. lwoffii, A. junii, A. soli, A. ursingii, A. bereziniae, A. nosocomialis, A. portensis, A. guerrae, A. baylyi, A. calcoaceticus, A. disperses, A. johnsonii, A. junii, A. lwoffii, A. nosocomialis, A. oleivorans, A. oryzae, A. pittii, A. radioresistens, and A. venetianus. The most common genes were those coding for different β-lactamases, including the carbapenemase genes blaNDM-1 and blaOXA-58. A. pittii was the species with the most β-lactamase resistance genes reported. Other genes that were commonly found include those encoding some aminoglycoside modifying enzymes, the most common being aph(6)-Id, ant(3″)-IIa, and aph(3″)-Ib, and efflux pumps. All or part of the genes coding for the AdeABC, AdeFGH, and AdeIJK efflux pumps were the most commonly found. This article incorporates all the current information about A. non-baumannii resistance genes. The comparison of the different resistomes shows that there are similarities in the genes present, but there are also significant differences that could impact the efficiency of treatments depending on the etiologic agent. This article is a comprehensive resource about A. non-baumannii resistomes.


2021 ◽  
Vol 9 (8) ◽  
pp. 1765
Author(s):  
Manon Dechêne-Tempier ◽  
Corinne Marois-Créhan ◽  
Virginie Libante ◽  
Eric Jouy ◽  
Nathalie Leblond-Bourget ◽  
...  

Streptococcus suis is a zoonotic pathogen causing important economic losses in swine production. The most commonly used antibiotics in swine industry are tetracyclines, beta-lactams, and macrolides. Resistance to these antibiotics has already been observed worldwide (reaching high rates for macrolides and tetracyclines) as well as resistance to aminoglycosides, fluoroquinolones, amphenicols, and glycopeptides. Most of the resistance mechanisms are encoded by antibiotic resistance genes, and a large part are carried by mobile genetic elements (MGEs) that can be transferred through horizontal gene transfer. This review provides an update of the resistance genes, their combination in multidrug isolates, and their localization on MGEs in S. suis. It also includes an overview of the contribution of biofilm to antimicrobial resistance in this bacterial species. The identification of resistance genes and study of their localization in S. suis as well as the environmental factors that can modulate their dissemination appear essential in order to decipher the role of this bacterium as a reservoir of antibiotic genes for other species.


2017 ◽  
Vol 5 (3) ◽  
Author(s):  
Yancheng Yao ◽  
Linda Falgenhauer ◽  
Volkhard A. J. Kempf ◽  
Michael Hogardt ◽  
Stephan Göttig ◽  
...  

ABSTRACT The draft genome sequences of two clonal, pandrug-resistant Serratia marcescens clinical isolates were determined. The resistance phenotype was plasmid driven, as 14 of 17 resistance genes were present on large IncFIB(K), IncHI2, and IncA/C2 plasmids indicating a large pool of transmissible antibiotic resistance genes.


2016 ◽  
Vol 1 (2) ◽  
pp. 22 ◽  
Author(s):  
Navindra Kumari Palanisamy ◽  
Parasakthi Navaratnam ◽  
Shamala Devi Sekaran

Introduction: Streptococcus pneumoniae is an important bacterial pathogen, causing respiratory infection. Penicillin resistance in S. pneumoniae is associated with alterations in the penicillin binding proteins, while resistance to macrolides is conferred either by the modification of the ribosomal target site or efflux mechanism. This study aimed to characterize S. pneumoniae and its antibiotic resistance genes using 2 sets of multiplex PCRs. Methods: A quintuplex and triplex PCR was used to characterize the pbp1A, ermB, gyrA, ply, and the mefE genes. Fifty-eight penicillin sensitive strains (PSSP), 36 penicillin intermediate strains (PISP) and 26 penicillin resistance strains (PRSP) were used. Results: Alteration in pbp1A was only observed in PISP and PRSP strains, while PCR amplification of the ermB or mefE was observed only in strains with reduced susceptibility to erythromycin. The assay was found to be sensitive as simulated blood cultures showed the lowest level of detection to be 10cfu. Conclusions: As predicted, the assay was able to differentiate penicillin susceptible from the non-susceptible strains based on the detection of the pbp1A gene, which correlated with the MIC value of the strains.


Sign in / Sign up

Export Citation Format

Share Document