scholarly journals Cooled Pads for Tilting-Pad Journal Bearings

Lubricants ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. 92
Author(s):  
Steven Chatterton ◽  
Paolo Pennacchi ◽  
Andrea Vania ◽  
Phuoc Vinh Dang

Tilting-pad journal bearings (TPJBs) are widely installed in rotating machines owing to their high stability, but some drawbacks can be noted, such as higher cost with respect to cylindrical journal bearings and thermal issues. High temperatures in the pads correspond to low oil-film thicknesses and large thermal deformations in the pads. Therefore, the restriction of the maximum temperature of the bearing is a key aspect for oil-film bearings. The temperature reduction is generally obtained by adopting higher oil inlet flowrates or suitable oil nozzles. In this paper, the idea of using cooled pads with internal channels in which an external cooling fluid is circulated will be applied to a TPJB for the first time. The three-dimensional TEHD model of the TPJB, equipped with a cooled pad, will be introduced, and the results of the numerical simulations will be discussed. Several analyses have been performed in order to investigate the influence of cooling conditions, such as the type, flowrate, inlet temperature and number of cooled pads. Two types of pad geometry with different cross-sections of the cooling circuit, namely, circular and six-square multi-channel sections, have been compared to the reference bearing with solid pads. Simple experimental tests were performed by means of a test rig equipped with a cooled pad bearing obtained with the additive manufacturing process, thus showing the effectiveness of the solution and the agreement with the predictions.

2020 ◽  
Vol 10 (10) ◽  
pp. 3529
Author(s):  
Sung-Hwa Jeung ◽  
Junho Suh ◽  
Hyun Sik Yoon

This paper presents the change of non-dimensional characteristics and thermal behavior of different sized tilting pad journal bearings (TPJBs) with the same Sommerfeld number. A three-dimensional (3D) TPJB numerical model is provided considering the thermo-elastic hydro-dynamic (TEHD) lubrication model with pad thermal-elastic deformation. The pivot stiffness is assumed to be the combination of linear and cubic stiffness based on the Hertzian contact theory. The TPJBs in a configuration of load between pad (LBP) with the same Sommerfeld number having seven different sizes are simulated, and their non-dimensional dynamic and static characteristics and thermal behavior are compared. Pad thermal and elastic deformation are both taken into account. If the changes in lubricant viscosity, thermal deformation, and elastic deformation of journal/pads due to viscous shearing are ignored, the bearings with identical Sommerfeld numbers should show the same performance characteristics. However, the heat generation at the bearing clearance during operation (a) induces a decrease in viscosity and heat transfer to journal/pads and (b) results in a thermal deformation. Furthermore, the elastic deformation of the tilting pads and pivots also affects the bearing dynamic performance. For the same Sommerfeld number, the numerical analyses provide how the viscous shearing and elastic deformation lead to a change in bearing performance. For the small bearings with the same Sommerfeld number, the non-dimensional characteristics did not change significantly, where the heat generation was small being compared to the large sized bearing. The largest change in non-dimensional characteristics occurred when the maximum temperature of the oil film increased by 30 °C or more compared to the lubricant supply temperature. The root cause of the change in the non-dimensional characteristics is the viscous shearing in the oil film, and the thermal deformation of the structures surrounding the oil film acts in combination. These results provide insight into the Sommerfeld number, which can be used for the early stage of bearing design.


1998 ◽  
Vol 120 (2) ◽  
pp. 405-409 ◽  
Author(s):  
P. Monmousseau ◽  
M. Fillon ◽  
J. Freˆne

Nowadays, tilting-pad journal bearings are submitted to more and more severe operating conditions. The aim of this work is to study the thermal and mechanical behavior of the bearing during the transient period from an initial steady state to a final steady state (periodic). In order to study the behavior of this kind of bearing under dynamic loading (Fdyn) due to a blade loss, a nonlinear analysis, including local thermal effects, realistic boundary conditions, and bearing solid deformations (TEHD analysis) is realized. After a comparison between theoretical results obtained with four models (ISO, ADI, THD, and TEHD) and experimental data under steady-state operating conditions (static load Ws), the evolution of the main characteristics for three different cases of the dynamic load (Fdyn/Ws < 1, Fdyn/Ws = 1 and Fdyn//Ws > 1) is discussed. The influence of the transient period on the minimum film thickness, the maximum pressure, the maximum temperature, and the shaft orbit is presented. The final steady state is obtained a long time after the appearance of a dynamic load.


2006 ◽  
Vol 129 (3) ◽  
pp. 865-869 ◽  
Author(s):  
Waldemar Dmochowski

Tilting-pad journal bearings (TPJBs) dominate as rotor supports in high-speed rotating machinery. The paper analyzes frequency effects on the TPJB’s stiffness and damping characteristics based on experimental and theoretical investigations. The experimental investigation has been carried out on a five pad tilting-pad journal bearing of 98mm in diameter. Time domain and multifrequency excitation has been used to evaluate the dynamic coefficients. The calculated results have been obtained from a three-dimensional computer model of TPJB, which accounts for thermal effects, turbulent oil flow, and elastic effects, including that of pad flexibility. The analyzes of the TPJB’s stiffness and damping properties showed that the frequency effects on the bearing dynamic properties depend on the operating conditions and bearing design. It has been concluded that the pad inertia and pivot flexibility are behind the variations of the stiffness and damping properties with frequency of excitation.


2021 ◽  
pp. 112-112
Author(s):  
Yuchuan Zhu ◽  
Zhengyi Jiang ◽  
Ling Yan ◽  
Yan Li ◽  
Fangfang Ai ◽  
...  

As heavy industry develops, large amounts of tilting-pad journal bearings are widely used in advanced technology and key equipment. So, it has become a hot research direction to ensure the stable operation of tilting-pad journal bearings by using multiphase lubricating oil. The aim of the present research was to clarify whether using the multiphase lubricating oil has a positive effect on the performance of the bearings. The approach is based on computational multiphase fluid dynamics and finite-element method. Reynolds averaged equations of multiphase flow was applied to computation for improving the accuracy. The change of loading capacity of oil film was studied with computational fluid dynamics simulation under particles added to the lubricating oil. The results indicate that the bearing capacity of bearing increases when the particle content, diameter and density increase. The performance of bearing becomes better when the multiphase lubricating oil is applied in the oil film of bearing. The implications of these results are that the development of multiphase lubricating oil has important practical significances.


Author(s):  
S. Strzelecki ◽  
L. Kusmierz ◽  
G. Poniewaz

In high speed compressors and turbine drive trains, the tilting 5-pad journal bearings are applied. Tilting-pad journal bearings are good option because they have very good hydrodynamic stability at high speed and are less sensitive to load direction and shaft misalignment. The paper introduces thermo-elastic deformations of tilting 3-pad journal bearing with asymmetric support of pads and operating at the conditions of adiabatic oil film. The deformations of pads were obtained based on the oil film pressure and temperature distributions. Reynolds, energy, geometry and viscosity equations have been solved numerically on the assumption of aligned orientation of bearing and journal axis and at static equilibrium position of journal.


1996 ◽  
Vol 118 (1) ◽  
pp. 232-238 ◽  
Author(s):  
M. Fillon ◽  
M. Khonsari

Design charts are presented which allow one to predict the maximum temperature and a realistic effective temperature of five-shoe tilting-pad bearings. The charts utilize two dimensionless parameters which characterize the temperature rise in the film based on the ISOADI boundary conditions. A number of examples are presented to illustrate the utility of the design chart where the results are compared to both experimental measurements and full THD simulations.


Author(s):  
Waldemar Dmochowski

Tilting-pad journal bearings (TPJB) dominate as rotor supports in high speed rotating machinery. The paper analyzes frequency effects on the TPJB’s stiffness and damping characteristics based on experimental and theoretical investigations. The experimental investigation has been carried out on a five pad tilting-pad journal bearing of 98 mm in diameter. Time domain and multifrequency excitation has been used to evaluate the dynamic coefficients. The calculated results have been obtained from a three-dimensional computer model of TPJB, which accounts for thermal effects, turbulent oil flow, and elastic effects, including that of pad flexibility. The analyzes of the TPJB’s stiffness and damping properties showed that the frequency effects on the bearing dynamic properties depend on the operating conditions and bearing design. It has been concluded that the pad inertia and pivot flexibility are behind the variations of the stiffness and damping properties with frequency of excitation.


Author(s):  
Andrea Rindi ◽  
Stefano Rossin ◽  
R. Conti ◽  
A. Frilli ◽  
E. Galardi ◽  
...  

In many industrial applications, tilting pad journal bearings (TPJBs) are increasingly used because they are very suitable both for high-speed and high external loads. Their study is fundamental in rotating machines and a compromise between accuracy and numerical efficiency is mandatory to achieve reliable results in a reasonable time. This paper mainly focuses on the development of efficient three-dimensional (3D) models of TPJBs, in order to contemporaneously describe both the rotor dynamics of the system and the lubricant supply plant in long simulations (from the initial transient phase to the steady-state condition). Usually, these two aspects are studied separately, but their interactions must be considered if an accurate description of the whole system is needed. The proposed model architecture considers all the six degrees-of-freedom (DOFs) between supporting structures and rotors and can be applied to different types of TJPB layout with different lubricant supply plants. In this research activity, the whole model has been developed and validated in collaboration with Nuovo Pignone General Electric S.p.a. which provided the required technical and experimental data.


Author(s):  
S. Chatterton ◽  
P. Pennacchi ◽  
A. Vania ◽  
E. Tanzi ◽  
R. Ricci

Tilting-pad journal bearings are installed with increased frequency owing to their dynamic stability characteristics in several rotating machine applications, typically in high rotating speed cases. This usually happens for new installations in highspeed compressors or during revamping operations of steam and gas turbines for power generation. The selection from a catalogue, or the design of a new bearing, requires the knowledge of the bearing characteristics such as babbitt metal temperatures, fluid-film thickness, load capacity, stiffness and damping coefficients. Temperature and fluid-film thickness are essential for the safety of the bearing. Babbitt metal is subject to creep at high temperatures, as it happens at high speed operations. On the contrary, at low speed or with high loads, oil-film thickness could be too low, resulting in metal to metal contact. Oil-film dynamic coefficients are largely responsible of the dynamic behaviour and of the stability of the rotor-tilting-pad-bearing system. Therefore, the theoretical evaluation and/or the experimental estimation of these coefficients are mandatory in the design phase. The theoretical evaluation of these coefficients for tilting pad journal bearings is difficult due to their complex geometry, boundary and thermal conditions and turbulent flow, whereas an experimental characterization requires a suitable test rig. The paper describes the test rig designed to this purpose and its unusual configuration with respect to other test rigs available in literature. Some preliminary tests performed for the bearing characterization are also shown.


1996 ◽  
Vol 118 (1) ◽  
pp. 225-231 ◽  
Author(s):  
L. Bouard ◽  
M. Fillon ◽  
J. Freˆne

A thermohydrodynamic analysis of tilting-pad bearing in turbulent flow regime is presented. Two tilting-pad journal bearings are studied. A local analysis of thermal turbulent phenomena is shown. The theoretical prediction of the maximum temperature decreases when the flow regime becomes nonlaminar and the decrease corresponding to higher power losses is explained using the velocity component profiles and the local heat flux in the film.


Sign in / Sign up

Export Citation Format

Share Document