scholarly journals Investigation of the Structural, Mechanical and Tribological Properties of Plasma Electrolytic Hardened Chromium-Nickel Steel

Lubricants ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 108
Author(s):  
Bauyrzhan Rakhadilov ◽  
Ainur Seitkhanova ◽  
Zarina Satbayeva ◽  
Gulnara Yerbolatova ◽  
Yulianna Icheva ◽  
...  

This paper investigates how electrolytic plasma hardening (PEH) bears upon the changes in the phase structural and tribological properties of steel 0.34C-1Cr-1Ni-1Mo-Fe, which is widely used in manufacturing highly stressed gears. The samples of steel 0.34C-1Cr-1Ni-1Mo-Fe went through the PEH in an electrolyte containing an aqua solution of 20% calcined soda (Na2CO3) and 10% carbamide ((NH2)2CO). The initial steel 0.34C-1Cr-1Ni-1Mo-Fe is stated to have the following structural components: a lamellar pearlite with volume share of 35%, a ferrite-carbide mixture of ~45% and a fragmented ferrite of ~20%; after the PEH it contains lath-lamellar martensite, fine particles of cementite and M23C6 carbide. The durability of steel 0.34C-1Cr-1Ni-1Mo-Fe was found to rise by 3.4 times after the PEH and its microhardness increased in 2.6 times. The curve-tension of the crystal lattice was established to be like plastic (χ = χpl) and does not cause the formation of microcracks in the material.

2021 ◽  
Author(s):  
Mengyao Ning ◽  
Kangshuai Li ◽  
Chengqi Yan ◽  
Guangfei Wang ◽  
Zehua Xu ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1375
Author(s):  
Soumya Sikdar ◽  
Pramod V. Menezes ◽  
Raven Maccione ◽  
Timo Jacob ◽  
Pradeep L. Menezes

Plasma electrolytic oxidation (PEO) is a novel surface treatment process to produce thick, dense metal oxide coatings, especially on light metals, primarily to improve their wear and corrosion resistance. The coating manufactured from the PEO process is relatively superior to normal anodic oxidation. It is widely employed in the fields of mechanical, petrochemical, and biomedical industries, to name a few. Several investigations have been carried out to study the coating performance developed through the PEO process in the past. This review attempts to summarize and explain some of the fundamental aspects of the PEO process, mechanism of coating formation, the processing conditions that impact the process, the main characteristics of the process, the microstructures evolved in the coating, the mechanical and tribological properties of the coating, and the influence of environmental conditions on the coating process. Recently, the PEO process has also been employed to produce nanocomposite coatings by incorporating nanoparticles in the electrolyte. This review also narrates some of the recent developments in the field of nanocomposite coatings with examples and their applications. Additionally, some of the applications of the PEO coatings have been demonstrated. Moreover, the significance of the PEO process, its current trends, and its scope of future work are highlighted.


Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1194
Author(s):  
Philipp Kiryukhantsev-Korneev ◽  
Alina Sytchenko ◽  
Yuriy Kaplanskii ◽  
Alexander Sheveyko ◽  
Stepan Vorotilo ◽  
...  

The coatings ZrB2 and Zr-B-N were deposited by magnetron sputtering of ZrB2 target in Ar and Ar–15%N2 atmospheres. The structure and properties of the coatings were investigated via scanning and transmission electron microscopy, energy dispersion analysis, optical profilometry, glowing discharge optical emission spectroscopy and X-ray diffraction analysis. Mechanical and tribological properties of the coatings were investigated using nanoindentation, “pin-on-disc” tribological testing and “ball-on-plate” impact testing. Free corrosion potential and corrosion current density were measured by electrochemical testing in 1N H2SO4 and 3.5%NaCl solutions. The oxidation resistance of the coatings was investigated in the 600–800 °С temperature interval. The coatings deposited in Ar contained 4–11 nm grains of the h-ZrB2 phase along with free boron. Nitrogen-containing coatings consisted of finer crystals (1–4 nm) of h-ZrB2, separated by interlayers of amorphous a-BN. Both types of coatings featured hardness of 22–23 GPa; however, the introduction of nitrogen decreased the coating’s elastic modulus from 342 to 266 GPa and increased the elastic recovery from 62 to 72%, which enhanced the wear resistance of the coatings. N-doped coatings demonstrated a relatively low friction coefficient of 0.4 and a specific wear rate of ~1.3 × 10−6 mm3N−1m−1. Electrochemical investigations revealed that the introduction of nitrogen into the coatings resulted in the decrease of corrosion current density in 3.5% NaCl and 1N H2SO4 solution up to 3.5 and 5 times, correspondingly. The superior corrosion resistance of Zr-В-N coatings was related to the finer grains size and increased volume of the BN phase. The samples ZrB2 and Zr-B-N resisted oxidation at 600 °C. N-free coatings resisted oxidation (up to 800 °С) and the diffusion of metallic elements from the substrate better. In contrast, Zr-B-N coatings experienced total oxidation and formed loose oxide layers, which could be easily removed from the substrate.


Sign in / Sign up

Export Citation Format

Share Document