scholarly journals Preparing the Degradable, Flame-Retardant and Low Dielectric Constant Nanocomposites for Flexible and Miniaturized Electronics with Poly(lactic acid), Nano ZIF-8@GO and Resorcinol Di(phenyl phosphate)

Materials ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 1756 ◽  
Author(s):  
Mi Zhang ◽  
Yu Gao ◽  
Yixing Zhan ◽  
Xiaoqing Ding ◽  
Ming Wang ◽  
...  

Degradable, flame retardant, and flexible nanocomposite films with low dielectric constant were prepared with poly (lactic acid) (PLA), nano ZIF-8@GO, and degradable flame-retardant resorcinol di(phenyl phosphate) (RDP). The SEM results of the fractured surfaces indicated that ZIF-8@GO and RDP were dispersed uniformly in the PLA matrix. The prepared films had good mechanical properties and the tensile strength of the film with 1.5 wt% of ZIF-8@GO was increased to 48.2 MPa, compared with 38.5 MPa of pure PLA. Meanwhile, the nanocomposite films were flexible due to the toughing effect of RDP. Moreover, above 27.0% of limited oxygen index (LOI) and a VTM-0 rating were achieved for the nanocomposite films. The effects of nano ZIF-8@GO hybrids and RDP on the dielectric properties were investigated, and the results showed that ZIF-8@GO and RDP were beneficial in reducing the dielectric constant and dielectric loss of the nanocomposites.

2016 ◽  
Vol 53 (1) ◽  
pp. 45-63 ◽  
Author(s):  
Kun Wang ◽  
Jingjing Wang ◽  
Dan Zhao ◽  
Wentao Zhai

In this study, flame-retardant poly(lactic acid) foams with satisfactory cell structures were prepared by microcellular foaming technology using phosphorus-containing flame retardant and graphene as the charring agent. The introduction of 5–30 wt% flame retardant increased the limited oxygen index value of poly(lactic acid) from 19.0 to 26.5–37.8% and simultaneously increased the foam expansion of poly(lactic acid) foams from 4.4 to 5.8–17.5. In addition, all the prepared poly(lactic acid)/flame-retardant composites passed the UL-94 V-0 rating. The addition of 0.5 wt% graphene increased the limited oxygen index value of poly(lactic acid)/flame-retardant composite with flame-retardant content of 15 wt% from 27.9 to 29.2%, and more graphene additions improved the antidripping behavior of poly(lactic acid) composites. The possible mechanisms of the effects of the resultant cellular structure on the flame-retardant properties of poly(lactic acid) composites were also discussed.


2018 ◽  
Vol 6 (24) ◽  
pp. 6378-6384 ◽  
Author(s):  
Xiaodong Yin ◽  
Yiyu Feng ◽  
Qiang Zhao ◽  
Yu Li ◽  
Shuangwen Li ◽  
...  

Transparent and flexible fluorinated polyimide films with loading of well-dispersed fluorographene exhibit low dielectric constants.


Nanoscale ◽  
2017 ◽  
Vol 9 (31) ◽  
pp. 10992-10997 ◽  
Author(s):  
Yash Thakur ◽  
Tian Zhang ◽  
C. Iacob ◽  
Tiannan Yang ◽  
J. Bernholc ◽  
...  

An enhanced dielectric response in nanocomposite films with low dielectric constant nanofillers at a very low volume content is achieved.


1999 ◽  
Vol 565 ◽  
Author(s):  
Y. Shimogaki ◽  
S. W. Lim ◽  
E. G. Loh ◽  
Y. Nakano ◽  
K. Tada ◽  
...  

AbstractLow dielectric constant F-doped silicon oxide films (SiO:F) can be prepared by adding fluorine source, like as CF4 to the conventional PECVD processes. We could obtain SiO:F films with dielectric constant as low as 2.6 from the reaction mixture of SiH4/N2 O/CF4. The structural changes of the oxides were sensitively detected by Raman spectroscopy. The three-fold ring and network structure of the silicon oxides were selectively decreased by adding fluorine into the film. These structural changes contribute to the decrease ionic polarization of the film, but it was not the major factor for the low dielectric constant. The addition of fluorine was very effective to eliminate the Si-OH in the film and the disappearance of the Si-OH was the key factor to obtain low dielectric constant. A kinetic analysis of the process was also performed to investigate the reaction mechanism. We focused on the effect of gas flow rate, i.e. the residence time of the precursors in the reactor, on growth rate and step coverage of SiO:F films. It revealed that there exists two species to form SiO:F films. One is the reactive species which contributes to increase the growth rate and the other one is the less reactive species which contributes to have uniform step coverage. The same approach was made on the PECVD process to produce low-k C:F films from C2F4, and we found ionic species is the main precursor to form C:F films.


2015 ◽  
Vol 264 ◽  
pp. 538-546 ◽  
Author(s):  
Li Zhang ◽  
Yinfeng Li ◽  
Huanhuan Wang ◽  
Yadong Qiao ◽  
Jinzhou Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document