scholarly journals Effects of Laser Texture Oxidation and High-Temperature Annealing of TiV Alloy Thin Films on Mechanical and Antibacterial Properties and Cytotoxicity

Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2495 ◽  
Author(s):  
Yin-Yu Chang ◽  
Jia-Hao Zhang ◽  
Heng-Li Huang

Titanium dioxide and vanadium oxides have been applied extensively in industrial and medical fields. The objective of this study was to develop various composite structures of titanium and vanadium oxide (Ti-V-O) coatings on pure titanium through high-temperature annealing and laser texturing oxidation, separately; additionally, surface morphologies, tribological and hydrophilic properties, and antibacterial and biocompatibility abilities of these Ti-V-O coatings were evaluated. TiV alloy thin films were deposited on pure titanium and then annealed to form Ti-V-O coatings through thermal oxidation and laser texturing oxidation. Ball-on-disc wear tests and contact angle tests were conducted to evaluate the tribological properties and wettability of the coatings, respectively. The antibacterial activity of the coatings was estimated by SYTO9 nucleic acid staining with Staphylococcus aureus (Gram-positive bacteria). The cell cytotoxicity of the coatings was analyzed following the ISO 10995-5:2009 standard with human skin fibroblast cells. The Ti-V-O coatings, subjected to annealing at 700 °C, demonstrated higher hardness (Hv 1171) and a lower friction coefficient (0.6). The highest hardness (Hv 2711) and the lowest friction coefficient (0.52) were obtained for the Ti-V-O after laser surface texturing oxidation at 100 kHz. The oxide coating obtained from 100 kHz laser texturing oxidation exhibited the lotus effect because of its systematic textured microstructures, and displayed superhydrophobic surface properties. Compared with the unannealed TiV coating, both the samples with high-temperature annealing and laser surface texturing oxidation had excellent antibacterial properties to Staphylococcus aureus. However, the Ti-V-O thin films exhibited notable cell cytotoxicity. Although the cell viability on Ti-V-O coatings were not ideal, this study confirmed improvement in surface hardness, tribology, and antibacterial performance in Ti-V-O coatings, which may have potential for use in biomedical tools, devices, and equipment.

Metals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1636
Author(s):  
Marko Sedlaček ◽  
Agnieszka Zuzanna Guštin ◽  
Borut Žužek

The aim of this research was to investigate the influence of laser surface texturing sequence on the fatigue properties of cold-work tool steel. For this reason, polished hourglass-type test specimens made from cold-work tool steel (K890) were surface textured using laser texturing. Surface textures were introduced before and after hard coating deposition (TiAlN) with the aim to investigate the sequence of surface-texturing process. It was found that coating deposition prolongs the fatigue life. The fatigue life behaviour can be influenced also by the sequence of surface texturing. In the case when laser texturing is done after coating deposition, it suffers in fatigue life properties. From a lower magnification, a fractured surface looks like a quasi-ductile fracture, but a closer look reveals that there is very little plastic deformation and some small flat regions can be seen with clear evidence of a brittle fracture mechanism with cleavage. Due to low fracture toughness of investigated steel, no fatigue striations of crack growth steps were found on the fractured surfaces.


2010 ◽  
Vol 97-101 ◽  
pp. 1429-1432 ◽  
Author(s):  
Hong Bin Liu ◽  
Hong Biao Han ◽  
Yu Jun Xue ◽  
Ji Shun Li

Laser Surface Texturing (LST) is an advanced method of surface micro-texturing technology. The aim of this paper is to investigate the influence of laser surface texturing distribution patterns on lubricant characteristics for laser texturing surfaces against cylindrical under conditions of film lubrication. The laser texturing surfaces are processed with power levels under YAG laser. Under conditions of constant depth and area coverage ratio of LST,patterns of the texture distribution and the sliding orientation relative to the texture were systematically varied. The experimental results suggested that 20° circumferential interval can increase the load-carrying ability of lubricating film.


2011 ◽  
Vol 686 ◽  
pp. 706-710
Author(s):  
Jie Jiang ◽  
Dang Sheng Xiong ◽  
Jian Liang Li ◽  
Yan Shi

Components of space machines often works at high temperature and vacuum, or on other rigour conditions, the traditional liquid lubricant cannot satisfy the requirement. The common solid lubricant is hard to supply between two friction surfaces continuously and it is easily decomposed and failure at high temperature. It is an urgent need to study a new type of lubrication technology. In this paper, the surface of 1Cr18Ni9Ti with high hardness and micro dimples was prepared through laser texturing and plasma molybdenizing/plasma nitriding duplex treatment. The textured surface was coated with MoS2 lubricating film and the friction and wear properties from room temperature to high temperature were evaluated. The results show that the laser surface textured dimples trap hard abrasive particles and reduce the damage to the lubricating film, and thus decrease the wear rate. The optimum dimple density of 7.1% is obtained. At elevated temperature, the wear rate of molybdenized texture or nitrided texture is lower than that of the matrix and single textured surface.


Friction ◽  
2021 ◽  
Author(s):  
Chia-Jui Hsu ◽  
Andreas Stratmann ◽  
Simon Medina ◽  
Georg Jacobs ◽  
Frank Mücklich ◽  
...  

AbstractLaser surface texturing (LST) has been proven to improve the tribological performance of machine elements. The micro-scale patterns manufactured by LST may act as lubricant reservoirs, thus supplying oil when encountering insufficient lubrication. However, not many studies have investigated the use of LST in the boundary lubrication regime, likely due to concerns of higher contact stresses that can occur with the increasing surface roughness. This study aims to examine the influence of LST on the fatigue lifetime of thrust rolling bearings under boundary lubrication. A series of periodic patterns were produced on the thrust rolling bearings, using two geometrically different designs, namely cross and dimple patterns. Base oil ISO VG 100 mixed with 0.05 wt% P of zinc dialkyldithiophosphate (ZDDP) was supplied. The bearings with cross patterns reduce the wear loss by two orders of magnitude. The patterns not only retain lubricant in the textured pockets but also enhance the formation of an anti-wear tribofilm. The tribofilm generation may be improved by the higher contact stresses that occur when using the textured surface. Therefore, in contrast to the negative concerns, the ball bearings with cross patterns were instead found to increase the fatigue life by a factor of three.


2018 ◽  
Vol 70 (1) ◽  
pp. 126-132 ◽  
Author(s):  
Shuwen Wang ◽  
Feiyan Yan ◽  
Ao Chen

Purpose The purpose of this paper is to investigate the tribological effects of laser surface texturing (LST) and residual stress on functional surfaces. Design/methodology/approach Three different surface textures (circular dimple, elliptical dimple and groove) with two different textured area ratios (10 and 20 per cent) are designed and fabricated by a Picosecond Nd YAG Laser machine. The friction and wear performance of textured specimens is tested using a UMT-2 friction and wear testing machine in mixed lubrication. Findings Test results show that elliptical dimples exhibit the best performance in wear resistance, circular dimples in friction reduction and grooves in stabilization of friction. The surfaces with larger textured area density exhibit better performance in both friction reduction and wear resistance. The improved performance of LST is the coupled effect of surface texture and residual stress. Originality/value The findings of this study may provide guidance for optimal design of functional surface textures in reciprocating sliding contacts under mixed or hydrodynamic lubrication, which can be used in automotive and other industrial applications.


Author(s):  
Tiffany Davis ◽  
Jian Cao ◽  
Wei Chen ◽  
Q. Jane Wang ◽  
Cedric Xia ◽  
...  

Surface texturing has become a valuable technique for reducing friction and wear in contacting parts; laser surface texturing is one such method used to create micro-dimples on the interface surface. This work investigates the surface material property variation caused by laser surface texturing. The hardness and modulus of elasticity of a steel laser surface texture sample were evaluated near the dimples and away from the dimpled zone through nano-indentation. Resulting data shows that no significant difference exists between the material properties from the two positions. An alternate technique for surface texture generation was also explored, involving the use of micro-punches to create surface features in a metal sample. Computational simulations were performed using a second material underneath a thin copper sheet. The second material was present to serve as a support and to allow extensive deformation of the top material. The choice of the support material and ratio of material thicknesses was optimized to minimize pile up. Trials were conducted for three base supporting materials: PTFE, PMMA, and aluminum. Results show that PMMA performed better than the other materials. Positive deflection was minimized when the PMMA thickness was at least fifteen times that of the copper sheet. Physical experiments were completed with a thin copper sheet to verify the results. An array of micro-indentations was also created in a bulk steel sample. In order to assess the effect of dimpling via micro-forming, nano-indentation was performed near and far from the deformed material of the dimples. Similar to the laser textured sample, no significant differences were found between the two locations.


2016 ◽  
Vol 68 (1) ◽  
pp. 116-124 ◽  
Author(s):  
Dawit Zenebe Segu ◽  
Pyung Hwang

Purpose – The purpose of this paper is to investigate and discuss the effect of multi-shape laser surface texturing (LST) steel surfaces on tribological performance. Design/methodology/approach – The textured surface with some specific formula arrays was fabricated by laser ablation process by combining patterns of circles and triangles, circles and squares and circles and ellipses. The tribological test was performed by a flat-on-flat tribometer under dry and lubrication conditions, and results were compared with that of untextured surface. Findings – The results showed that the textured surface had better friction coefficient performance than the untextured surface due to hydrodynamic lubrication effect. Through an increase in sliding speed, the beneficial effect of LST performance was achieved under dry and lubrication conditions. Originality/value – This paper develops multi-shape LST steel surfaces for improving the friction and wear performance under dry and lubrication conditions.


Sign in / Sign up

Export Citation Format

Share Document