scholarly journals Hydration Kinetics of Composite Cementitious Materials Containing Copper Tailing Powder and Graphene Oxide

Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2499 ◽  
Author(s):  
Shuhua Liu ◽  
Qiaoling Li ◽  
Xinyi Zhao

The hydration heat evolution curves of composite cementitious materials containing copper tailing powder (CT) and graphene oxide (GO) with different contents are measured and analyzed in this paper. The hydration rate and total hydration heat of the composite cementitious materials decrease with the increase of CT dosage, but improve with the increase of CT fineness and GO dosage. The hydration process of the cementitious systems undergoes three periods, namely nucleation and crystal growth (NG), phase boundary reaction (I), and diffusion (D), which can be simulated well using the Krstulovic–Dabic model. The hydration rates of the three controlling processes of the composite cementitious system decrease with the increase of CT content, but improve slightly with the increase of CT fineness. GO enhances the controlling effect of the NG process of the cementitious systems with or without CT, thus promotes the early hydration as a whole.

2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Xiaolin Chang ◽  
Xinping Yang ◽  
Wei Zhou ◽  
Guoshuai Xie ◽  
Shuhua Liu

The influence of glass powder (GP) on hydration kinetics of composite cementitious materials has been investigated by isothermal calorimetry test and hydration kinetics methods in this paper. The hydration heat emission rate and hydration heat decrease gradually while the induction and acceleration period increase with the increase of GP content. According to Krstulovic-Dabic model, the hydration process of composite cementitious materials containing GP is controlled by a variety of complicated reaction mechanisms, which can be divided into three periods: nucleation and crystal growth (NG), phase boundary reaction (I), and diffusion (D). The NG and I process are shortened after incorporating GP.


Materials ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 1900 ◽  
Author(s):  
Miao Miao ◽  
Qingyang Liu ◽  
Jian Zhou ◽  
Jingjing Feng

The addition of expansive agents could overcome the main disadvantages of raw concrete including high brittleness and low tensile strength. Few studies have investigated the early hydration kinetics of expansive cementitious binders, though the findings from the early hydration kinetics are helpful for understanding their technical performances. In this study, mixtures of 3CaO•3Al2O3•CaSO4 and CaSO4 (i.e., ZY-type™ expansive agent) with different proportions of mineral admixtures (e.g., fly ash and slag) were added into cement pastes to investigate the early hydration kinetics mechanism of expansive cementitious binders. Early hydration heat evolution rate and cumulative hydration heat were measured by isothermal calorimeter. Kinetic parameters were estimated based on the Krstulovic–Dabic model and Knudsen equations. Mechanical performances of expansive cementitious binders were tested in order to evaluate if they met the basic requirements of shrinkage-compensating materials in technical use. The early hydration heat released from cementitious binders containing ZY-type™ expansive agent was much greater than that released by pure cement, supporting the idea that addition of the expansive agent would improve the reaction of cement. The early hydration kinetic rates were decreased due to the reactions of the mineral admixture (e.g., fly ash or slag) and the ZY-type™ expansive agent in the cement system. The hydration reaction of cementitious binders containing ZY-type™ expansive agent obeyed the Krstulovic–Dabic model well. Three processes are involved in the hydration reaction of cementitious binders containing ZY-type™ expansive agent. These are nucleation and crystal growth (NG), interactions at phase boundaries (I), and diffusion (D). The 14-day expansion rates of cementitious binders containing ZY-type™ expansive agent are in the range of 2.0 × 10−4 to 3.5 × 10−4, which could meet the basic requirements of anti-cracking performances in technical use according to Chinese industry standard JGJ/T 178-2009. This study could provide an insight into understanding the effects of expansive agents on the hydration and mechanical performances of cementitious binders.


2013 ◽  
Vol 639-640 ◽  
pp. 368-371
Author(s):  
Qing Huang ◽  
Jian Yin ◽  
Wei Min Song

The effects of mineral admixtures and superplasticizer on reducing the hydration heat of cementitious material were evaluated in this study, and the heat evolution rate and hydration heat were tested as the two parameters to evaluate the effect of improvement. The results showed that the cement partly-replaced with fly ash (FA) and slag (SG) could significantly decrease the release rate of hydration heat on the early stage of hydration, and lower the peak value of the heat evolution rate. The superplasticizer (TJ-Ⅲ) could reduce the hydration heat mainly on the early stage of hydration, and extended the induction period. In comparison with slag, the fly ash had more active effects on reducing the peak value and release rate of hydration heat.


2017 ◽  
Vol 150 ◽  
pp. 511-519 ◽  
Author(s):  
Nsesheye Susan Msinjili ◽  
Wolfram Schmidt ◽  
Berta Mota ◽  
Sarah Leinitz ◽  
Hans-Carsten Kühne ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Shuncheng Xiang ◽  
Yingli Gao ◽  
Caijun Shi

Three polycarboxylates with different comb structures (i.e., the same degree of polymerization in side chains but different main chains) were synthesized via radical polymerization reaction at room temperature. The effect of polycarboxylates on the surface tension and the flowability in cement pastes was determined. The best product was selected to study its effects on the hydration heat evolution, compressive strength, autogenous shrinkage, and drying shrinkage of cement pastes with different kinds and contents of supplementary cementitious materials. The results showed that with the increase of molar ratio between AA and TPEG to 6 : 1, we could synthesis the best product. When the water-binder ratio was 0.4, with the increase of polycarboxylates, the cement hydration heat evolution had been slowed down, and the more the dosage was, the more obvious the effect was. Adding supplementary cementitious materials to cement under the same experimental conditions also played a mitigation role in slowing down the hydration heat. When the water-binder ratio was 0.3, supplementary cementitious materials could increase the strength of cement by 24.5% in maximum; its autogenous shrinkage and drying shrinkage could be decreased, respectively, by 60.1% and 21.9% in the lowest.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 642
Author(s):  
Jun Zhang ◽  
Guoju Ke ◽  
Yuzhang Liu

Compared to ordinary Portland cement (OPC), calcium sulfoaluminate cement (CSA) displays very early-age strength and faster heat-releasing rate during hydration. In the present paper, the early hydration heat of CSA paste with influences of supplementary cementitious materials (SCMs) and water to cement (or binder) ratio (w/c) is systematically studied by measuring the heat-releasing rate using a calorimeter. Three traditional SCMs—silica fume (SF), fly ash (FA) and ground granulated blast furnace slag (SL)—were used in the study. A water to cement or binder ratio (w/c) between 0.19 and 0.73 was used in the mixtures. The results show that three exothermic peaks were presented during hydration—dissolution exothermic peak and two reaction exothermic peaks. With the w/c of 0.3, the first and second reaction peaks of the CSA paste are as high as 17.8 times and 4.1 times that of OPC paste, and the occurring time is much earlier than that of the OPC paste. The second reaction peak appears earlier, and the third reaction peak appears later in the pastes with addition of SF than in those without SF. Decreasing w/c can greatly reduce the two reaction peaks of the paste, and it looks that there is a critical value of w/c between 0.24 and 0.30. Above the critical value, the effect of w/c is minor, and below that the influence is obvious. An optimal use of SCMs in CSA pastes under different w/c can greatly decrease the heat releasing while maintaining the required strength.


2010 ◽  
Vol 168-170 ◽  
pp. 26-30 ◽  
Author(s):  
Bin Lei ◽  
Lang Wu ◽  
Gu Quan Song

Based on the multi-phase hydration dynamic model, taking into account the factors such as chemical composition of cement, curing temperature, water-cement ratio, the final hydration degree and fineness of cement, a theoretical hydration kinetics equation is established in this paper. It can be used to predict the hydration rate increases with the change of hydration degree. The results showed that: water-cement ratio will accelerate the phase boundary reaction, while not influence the early crystallization of nucleation and crystal growth; temperature can accelerate the hydration process, while it can not change the ultimate hydration degree.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Won Jung Cho ◽  
Min Jae Kim ◽  
David Su Vin Lee

The potential use of ferronickel slag (FNS) as supplementary cementitious material has been widely researched in recent years. Although much research was carried out on utilizing FNS as a binder, its advantages and disadvantages are still not clear. To properly use FNS as a cement replacement, this paper summarizes the following. (1) Changes expected on the oxide composition of FNS powder are due to the forming ores, fluxing stone, and cooling method. (2) The decreasing of the hydration heat evolution rate was detected by hydration heat evolution test and this is due to the low content of CaO and Al2O3 component in FNS. (3) It was found that the incorporation of FNS forms a dense pore structure more than cement mix and this is due to the secondary hydration reactions. (4) Hydration characteristics of FNS were assessed by pozzolanic reactions unexpectedly detected and incorporation of FNS creates C-S-H gel and hydrotalcite. (5) The development of strength was tested by compressive strength, splitting tensile strength, and flexural strength. From the results, the reduction of compressive strength was detected at an early age but substantially increasing at the long-term curing ages. However, splitting tensile strength and flexural strength of concrete have shown various trends. (6) There is an improvement in the resistance to chloride penetration and sulfate attack while susceptible to carbonation. This is induced by the lowered pH in pore solution due to the reduction of Ca(OH)2 by substituting FNS binder. Finally, (8) ternary blended mixtures with conventional cementitious materials are an option to properly use FNS as a binder.


Sign in / Sign up

Export Citation Format

Share Document