scholarly journals Damage Evolution of RC Beams Under Simultaneous Reinforcement Corrosion and Sustained Load

Materials ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 627 ◽  
Author(s):  
Jiansheng Shen ◽  
Xi Gao ◽  
Bo Li ◽  
Kun Du ◽  
Ruoyu Jin ◽  
...  

To accurately obtain the performance of concrete structures in coastal regions, it is necessary to correctly understand the damage evolution law of reinforced concrete (RC) members under real working conditions. In this paper, four RC beams, subjected to different levels of corrosion and sustained load, are first tested. Reinforcement corrosion coupled with sustained load increases the number and width of cracks at the soffit of beams but decreases their loading capacities. Crack width of the corroded beam under 50% of designed load is two times of that under 30% of designed load. Residual loading capacities of the corroded beams subjected to 30% and 50% of designed load are 87.5% and 81.8% of the control beam. A finite element model is developed for the corroded RC beams. Due to less confinement, concrete below and at the sides of reinforcements is subjected to a higher stress, compared to concrete above the reinforcements. Corrosion expansion of reinforcements is successfully modelled by a temperature-filed method, as it properly simulates the damage evolution of the corroded RC beams. As a result, concrete cracking, caused by the reinforcement corrosion, is well captured. Coupling reinforcement corrosion with sustained load significantly increases the damage level in RC beams, particularly for those subjected to a high sustained load. The whole damage evolution process of concrete cracking due to corrosion expansion under the coupling effect of sustained loading and environment can be simulated, thus providing a reference for the durability evaluation, life prediction, and numerical simulation of concrete structure.

Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 506 ◽  
Author(s):  
Alexandre Mathern ◽  
Jincheng Yang

Nonlinear finite element (FE) analysis of reinforced concrete (RC) structures is characterized by numerous modeling options and input parameters. To accurately model the nonlinear RC behavior involving concrete cracking in tension and crushing in compression, practitioners make different choices regarding the critical modeling issues, e.g., defining the concrete constitutive relations, assigning the bond between the concrete and the steel reinforcement, and solving problems related to convergence difficulties and mesh sensitivities. Thus, it is imperative to review the common modeling choices critically and develop a robust modeling strategy with consistency, reliability, and comparability. This paper proposes a modeling strategy and practical recommendations for the nonlinear FE analysis of RC structures based on parametric studies of critical modeling choices. The proposed modeling strategy aims at providing reliable predictions of flexural responses of RC members with a focus on concrete cracking behavior and crushing failure, which serve as the foundation for more complex modeling cases, e.g., RC beams bonded with fiber reinforced polymer (FRP) laminates. Additionally, herein, the implementation procedure for the proposed modeling strategy is comprehensively described with a focus on the critical modeling issues for RC structures. The proposed strategy is demonstrated through FE analyses of RC beams tested in four-point bending—one RC beam as reference and one beam externally bonded with a carbon-FRP (CFRP) laminate in its soffit. The simulated results agree well with experimental measurements regarding load-deformation relationship, cracking, flexural failure due to concrete crushing, and CFRP debonding initiated by intermediate cracks. The modeling strategy and recommendations presented herein are applicable to the nonlinear FE analysis of RC structures in general.


2013 ◽  
Vol 690-693 ◽  
pp. 2554-2558
Author(s):  
Hua Jing Zhang ◽  
Zhi Tao Tang

The finite element method was adopted to predict the cutting temperature filed of workpiece surface when machining aerospace aluminum alloy 7050-T7451. Some key techniques such as the materials flow stress behavior, the separation of the chips with the workpiece, failure and fracture criterion, the tool-chip friction model were discussed in details. To validate the finite element model, the cutting temperature field of the chip was obtained by infrared thermal imaging system. The result revealed that the prediction model is credible. Based on the model, the effects of tool geometrical parameters such as flank wear, cutting edge inclination and corner radius on cutting temperature were analyzed.


2015 ◽  
Vol 2015 ◽  
pp. 1-8
Author(s):  
Yin-hui Wang ◽  
Yi-song Zou ◽  
Lue-qin Xu ◽  
Zheng Luo

In order to investigate the effects of water current impact and fluid-structure interaction on the bridge piers, the mechanism of water flow impact on the bridge pier is firstly studied. Then a finite element model of a bridge pier is established including the effects of water flow impact as well as the water circumferential motion around the pier. Comparative study is conducted between the results of water impact effect, fluid-structure coupling effect, theoretical analysis, and also the results derived using the formulas specified in the design codes home and abroad. The results show that the water flow force calculated using the formulas provided by the codes should be multiplied by an impact amplifier to account for the effect of flood impact on the bridge pier. When the flood flows around the pier, the fluid-structure coupling effect on the bridge pier can be neglected. The method specified in the China guidelines ofGeneral Code for Design of Highway Bridges and Culvertstends to provide a larger result of the water flow force.


1998 ◽  
Vol 4 (S2) ◽  
pp. 558-559
Author(s):  
K. E. Sickafus

In ion irradiation damage studies on ceramics, damage evolution is often assessed using Rutherford backscattering spectroscopy and ion channeling (RBS/C) techniques. In a typical experiment, a single crystal ceramic sample is irradiated with heavy ions and then the crystal is exposed to He ions along a low-index crystallographic orientation. Simultaneously, the backscattered He ion yield is measured as a function of ion energy loss. For He ions scattered from the heavy ion irradiated volume, the He ion yield increases in proportion to the heavy ion dose. The RBS/C yield rises because the He ion beam is dechanneled by, for instance, interstitial point defects and clusters and their associated strain fields. A quantitative measure of dechanneling is denoted by χmin, defined as the ratio of the He ion yield along a low-index crystal orientation, to the yield obtained in a random (non-channeling) orientation. The damage parameter xmin varies from 0 to 1, where 1 represents the maximum damage level that can be measured by RBS/C.


Author(s):  
Soon Myeon Wang ◽  
J. S. Kim ◽  
T. E. Jin ◽  
M. J. Jhung ◽  
Y. H. Choi ◽  
...  

The structural integrity of integral reactor assembly of 65Mwt thermal capacity is assessed by using the commercial finite element package ANSYS in order to evaluate the seismic safety margin. First of all, the modal analyses are performed using the various analysis models with/without the fluid coupling effect in order to validate a super element model and to evaluate the coupling effect on natural frequency. Based on the modal analysis results, the seismic analyses are performed using the ground response spectrum defined in Reg. Guide 1.60. Finally, time-history analyses are performed using the modal analysis results, the super element model and an inertia load approach. As a result, the reliable and efficient seismic analysis model for an integral reactor assembly is developed and it is found that an integral reactor assembly has the sufficient seismic safety margin.


2020 ◽  
Vol 2020 ◽  
pp. 1-18 ◽  
Author(s):  
Walid Mansour ◽  
Bassam A. Tayeh

This study presents a numerical investigation on the shear behaviour of shear-strengthened reinforced concrete (RC) beams by using various ultrahigh performance fibre-reinforced concrete (UHPFRC) systems. The proposed 3D finite element model (FEM) was verified by comparing its results with those of experimental studies in the literature. The validated numerical model is used to analyse the crucial parameters, which are mainly related to the design of RC beams and shear-strengthened UHPFRC layers, such as the effect of shear span-to-depth ratio on the shear behaviour of the strengthened or nonstrengthened RC beams and the effect of geometry and length of UHPFRC layers. Moreover, the effect of the UHPFRC layers’ reinforcement ratio and strengthening of one longitudinal vertical face on the mechanical performance of RC beams strengthened in shear with UHPFRC layers is investigated. Results of the analysed beams show that the shear span-to-depth ratio significantly affects the shear behaviour of not only the normal-strength RC beams but also the RC beams strengthened with UHPFRC layers. However, the effect of shear span-to-depth ratio has not been considered in existing design code equations. Consequently, this study suggests two formulas to estimate the shear strength of normal-strength RC beams and UHPFRC-strengthened RC beams considering the effect of the shear span-to-depth ratio.


Sign in / Sign up

Export Citation Format

Share Document