scholarly journals Quantitative Relationship Analysis of Mechanical Properties with Mg Content and Heat Treatment Parameters in Al–7Si Alloys Using Artificial Neural Network

Materials ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 718 ◽  
Author(s):  
Xiaoyan Wu ◽  
Huarui Zhang ◽  
Haiyang Cui ◽  
Zhen Ma ◽  
Wei Song ◽  
...  

In this paper, an artificial neural network (ANN) model with high accuracy and good generalization ability was developed to predict and optimize the mechanical properties of Al–7Si alloys. The quantitative correlation formulas of the mechanical properties with Mg content and heat treatment parameters were established based on the transfer function and weight values. The relative importance of the input variables, Mg content and heat treatment parameters, on the mechanical properties of Al–7Si alloys were identified through sensitivity analysis. The results indicated that the mechanical properties of Al–7Si alloys were sensitive to Mg content and aging temperature. Then the individual and the combined influences of these input variables on the properties of Al–7Si alloys were simulated and the process parameters were optimized using the artificial neural network model. Finally, the proposed model was validated to be a robust tool in predicting the mechanical properties of the Al–7Si alloy by conducting experiments.

2018 ◽  
Vol 7 (4.19) ◽  
pp. 778
Author(s):  
Abdul Kareem F. Hassan ◽  
Qahtan A. Jawad

This research involved a study of the heat treatment conditions effect on the mechanical properties of martensitic stainless steel type AISI 410. Heat treatment process was hardening of the metal by quenching at different temperature 900°C, 950°C, 1000°C, 1050°C and 1100°C, followed by double tempering at 200°C, 250°C, 300°C, 350°C, 400°C, 450°C, 500°C, 550°C, 600°C, 650°C and 700°C, were evaluated and study of some mechanical properties such as hardness, impact energy and properties of tensile test such as yield and tensile strength is carried out. Multiple outputs Artificial Neural Network model was built with a Matlab package to predict the quenching and tempering temperatures. Also, linear and nonlinear regression analyses (using Data fit package) were used to estimate the mathematical relationship between quenching and tempering temperatures with hardness, impact energy, yield, and tensile strength. A comparison between experimental, regression analysis and ANN model show that the multiple outputs ANN model is more accurate and closer to the experimental results than the regression analysis results. 


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Abolghasem Daeichian ◽  
Rana Shahramfar ◽  
Elham Heidari

Abstract Lime is a significant material in many industrial processes, including steelmaking by blast furnace. Lime production through rotary kilns is a standard method in industries, yet it has depreciation, high energy consumption, and environmental pollution. A model of the lime production process can help to not only increase our knowledge and awareness but also can help reduce its disadvantages. This paper presents a black-box model by Artificial Neural Network (ANN) for the lime production process considering pre-heater, rotary kiln, and cooler parameters. To this end, actual data are collected from Zobahan Isfahan Steel Company, Iran, which consists of 746 data obtained in a duration of one year. The proposed model considers 23 input variables, predicting the amount of produced lime as an output variable. The ANN parameters such as number of hidden layers, number of neurons in each layer, activation functions, and training algorithm are optimized. Then, the sensitivity of the optimum model to the input variables is investigated. Top-three input variables are selected on the basis of one-group sensitivity analysis and their interactions are studied. Finally, an ANN model is developed considering the top-three most effective input variables. The mean square error of the proposed models with 23 and 3 inputs are equal to 0.000693 and 0.004061, respectively, which shows a high prediction capability of the two proposed models.


Author(s):  
Yi-Shu Chen ◽  
Dan Chen ◽  
Chao Shen ◽  
Ming Chen ◽  
Chao-Hui Jin ◽  
...  

Abstract Background The artificial neural network (ANN) emerged recently as a potent diagnostic tool, especially for complicated systemic diseases. This study aimed to establish a diagnostic model for the recognition of fatty liver disease (FLD) by virtue of the ANN. Methods A total of 7,396 pairs of gender- and age-matched subjects who underwent health check-ups at the First Affiliated Hospital, College of Medicine, Zhejiang University (Hangzhou, China) were enrolled to establish the ANN model. Indices available in health check-up reports were utilized as potential input variables. The performance of our model was evaluated through a receiver-operating characteristic (ROC) curve analysis. Other outcome measures included diagnostic accuracy, sensitivity, specificity, Cohen’s k coefficient, Brier score, and Hosmer-Lemeshow test. The Fatty Liver Index (FLI) and the Hepatic Steatosis Index (HSI), retrained using our training-group data with its original designated input variables, were used as comparisons in the capability of FLD diagnosis. Results Eight variables (age, gender, body mass index, alanine aminotransferase, aspartate aminotransferase, uric acid, total triglyceride, and fasting plasma glucose) were eventually adopted as input nodes of the ANN model. By applying a cut-off point of 0.51, the area under ROC curves of our ANN model in predicting FLD in the testing group was 0.908 [95% confidence interval (CI), 0.901–0.915]—significantly higher (P < 0.05) than that of the FLI model (0.881, 95% CI, 0.872–0.891) and that of the HSI model (0.885; 95% CI, 0.877–0.893). Our ANN model exhibited higher diagnostic accuracy, better concordance with ultrasonography results, and superior capability of calibration than the FLI model and the HSI model. Conclusions Our ANN system showed good capability in the diagnosis of FLD. It is anticipated that our ANN model will be of both clinical and epidemiological use in the future.


Author(s):  
Hadjira Maouz ◽  
◽  
Asma Adda ◽  
Salah Hanini ◽  
◽  
...  

The concentration of carbonyl is one of the most important properties contributing to the detection of the thermal aging of polymer ethylene propylene diene monomer (EPDM). In this publication, an artificial neural network (ANN) model was developed to predict concentration of carbenyl during the thermal aging of EPDM using a database consisting of seven input variables. The best fitting training data was obtained with the architecture of (7 inputs neurons, 10 hidden neurons and 1 output neuron). A Levenberg Marquardt learning (LM) algorithm, hyperbolic tangent transfer function were used at the hidden and output layer respectively. The optimal ANN was obtained with a high correlation coefficient R= 0.995 and a very low root mean square error RMSE = 0.0148 mol/l during the generalization phase. The comparison between the experimental and calculated results show that the ANN model is able of predicted the concentration of carbonyl during the thermal aging of ethylene propylene diene monomer


2008 ◽  
Vol 273-276 ◽  
pp. 323-328 ◽  
Author(s):  
H. Khorsand ◽  
M. Arjomandi ◽  
H. Abdoos ◽  
S.H. Sadati

Heat treatment is an important method for improving the mechanical properties of industrial parts that are made through the powder metallurgy. Most PM steels are subjected to hardening and tempering, and it is due to this treatment that tempered martensite is formed. After heat treatment, these steel’s mechanical properties are affected by the heat treatment parameters and the initial density. In this paper, in order to make an evaluation of the effect of the above parameters, FN-0205 PM steel with various densities is heat treated in different austenite conditions and tempering time. Their mechanical properties are then evaluated and recorded. Afterwards, this data obtained by experimental procedure are predicted for various conditions. The method employed here is the well-known feedforward Artificial Neural Network (ANN) with the Back Propagation (BP) learning algorithm. Comparison between predicted values and experimental data, in the present study, indicate that the predicted results from this model are in good agreement with the experimental values.


2012 ◽  
Vol 463-464 ◽  
pp. 439-443
Author(s):  
Daryoush Emadi ◽  
Musbah Mahfoud

The mechanical properties of aluminium alloy castings, such as EL%, YS and UTS, are controlled by the casting and heat treatment variables, alloy’s composition, and melt treatment. Despite the abundance of literature data, the large number of the controlling parameters has made it difficult to predict and model the mechanical properties by the conventional techniques. Another obstacle encountered when making such a prediction is the complex kinetics and interactions that exist among the many variables. The goal of this study was to develop Artificial Neural Network (ANN) and Multiple Regression models to predict the mechanical properties of A356 alloy from the processing variables. Several standard nonlinear regression and multi-layer ANN models were developed and trained using data from the literature and experimental results. Due to the complexity of A356’s solidification behaviour, the nonlinear regression produced results that were not as accurate as those produced by the ANN model. The results indicate that ANN is a suitable technique for predicting mechanical properties from alloy chemistry and processing variables.


Author(s):  
Chungkuk Jin ◽  
HanSung Kim ◽  
JeongYong Park ◽  
MooHyun Kim ◽  
Kiseon Kim

Abstract This paper presents a method for detecting damage to a gillnet based on sensor fusion and the Artificial Neural Network (ANN) model. Time-domain numerical simulations of a slender gillnet were performed under various wave conditions and failure and non-failure scenarios to collect big data used in the ANN model. In training, based on the results of global performance analyses, sea states, accelerations of the net assembly, and displacements of the location buoy were selected as the input variables. The backpropagation learning algorithm was employed in training to maximize damage-detection performance. The output of the ANN model was the identification of the particular location of the damaged net. In testing, big data, which were not used in training, were utilized. Well-trained ANN models detected damage to the net even at sea states that were not included in training with high accuracy.


2021 ◽  
Vol 343 ◽  
pp. 03012
Author(s):  
Iliass El Mrabti ◽  
Abdelhamid Touache ◽  
Abdelhadi El Hakimi ◽  
Abderahim Chamat

In sheet metal manufacturing, the ability to predict failures, such as springback, wrinkling and thinning, are of high importance. The objective of this study is to compare the response surface methodology (RSM) and the artificial neural network (ANN) model for predicting springback during the deep drawing process. In this investigation, friction coefficient, punch speed and blank holder force were considered as input variables. Sample data were planned by the complete factorial design and obtained via numerical simulation. To compare the RSM and ANN models, a goodness of-fit test was performed. The results of the two methods are promising and it is found that the ANN results are more accurate than the RSM results.


2017 ◽  
Vol 82 (4) ◽  
pp. 399-409
Author(s):  
Cao Yu ◽  
Shun Yao ◽  
Xianlong Wang ◽  
Tian Yao ◽  
Hang Song

The relationship between the structural descriptions and osmotic coefficients of binary mixtures containing sixteen different ionic liquids and seven kinds of solvents has been investigated by back propagation artificial neural network (BP ANN). The influence of temperature on the osmotic coefficients was considered and the concentrations of ionic liquids were close to 1 mol kg-1, except in acetonitrile. Multi linear regression (MLR) was used to choose the variables for the artificial neural network (ANN) model. A three layer BP ANN with seven variables containing structural descriptions of the ionic liquids and the character of the solvent as input variables was developed. Compared with experimental data, the osmotic coefficients calculated using the ANN model had a high squared correlation coefficient (R2) and a low root mean squared error (RMSE).


Sign in / Sign up

Export Citation Format

Share Document