Modeling effects of alloying elements and heat treatment parameters on mechanical properties of hot die steel with back-propagation artificial neural network

2017 ◽  
Vol 24 (12) ◽  
pp. 1254-1260 ◽  
Author(s):  
Yong Liu ◽  
Jing-chuan Zhu ◽  
Yong Cao
2008 ◽  
Vol 273-276 ◽  
pp. 323-328 ◽  
Author(s):  
H. Khorsand ◽  
M. Arjomandi ◽  
H. Abdoos ◽  
S.H. Sadati

Heat treatment is an important method for improving the mechanical properties of industrial parts that are made through the powder metallurgy. Most PM steels are subjected to hardening and tempering, and it is due to this treatment that tempered martensite is formed. After heat treatment, these steel’s mechanical properties are affected by the heat treatment parameters and the initial density. In this paper, in order to make an evaluation of the effect of the above parameters, FN-0205 PM steel with various densities is heat treated in different austenite conditions and tempering time. Their mechanical properties are then evaluated and recorded. Afterwards, this data obtained by experimental procedure are predicted for various conditions. The method employed here is the well-known feedforward Artificial Neural Network (ANN) with the Back Propagation (BP) learning algorithm. Comparison between predicted values and experimental data, in the present study, indicate that the predicted results from this model are in good agreement with the experimental values.


2010 ◽  
Vol 146-147 ◽  
pp. 1698-1701
Author(s):  
Zhe Zhe Hou ◽  
Yan Liang Du

On the basis of numerous experimental results the effect of heat treatment on mechanical properties of TC4 alloy is studied. A computer model expressing the relationships between heat treatment and mechanical properties has been established with a back propagation feed forword artificial neural network method. The optimization methods based on artificial neural network and the genetic algorithm, using binary system, optimize the weight and threshold by the genetic algorithm. The calculation results show that the model has good learning precision and generalization and it can be used for predicting the mechanical properties of TC4 alloy.


2020 ◽  
Vol 14 (2) ◽  
pp. 6789-6800
Author(s):  
Vishal Jagota ◽  
Rajesh Kumar Sharma

Resistance to wear of hot die steel is dependent on its mechanical properties governed by the microstructure. The required properties for given application of hot die steel can be obtained with control the microstructure by heat treatment parameters. In the present paper impact of different heat treatment parameters like austenitizing temperature, tempering time, tempering temperature is studied using response surface methodology (RSM) and artificial neural network (ANN) to predict sliding wear of H13 hot die steel. After heat treating samples at austenitizing temperature of 1020°C, 1040°C and 1060°C; tempering temperature 540°C, 560°C and 580°C; tempering time 1hour, 2hours and 3hours, experimentation on pin-on-disc tribo-tester is done to measure the sliding wear of H13 die steel. Box-Behnken design is used to develop a regression model and analysis of variance technique is used to verify the adequacy of developed model in case of RSM. Whereas, multi-layer feed-forward backpropagation architecture with input layer, single hidden layer and an output layer is used in ANN. It was found that ANN proves to be a better tool to predict sliding wear with more accuracy. Correlation coefficient R2 of the artificial neural network model is 0.986 compared to R2 of 0.957 for RSM. However, impact of input parameter interactions can only be analysed using response surface method. In addition, sensitivity analysis is done to determine the heat treatment parameter exerting most influence on the wear resistance of H13 hot die steel and it showed that tempering time has maximum influence on wear volume, followed by tempering temperature and austenitizing temperature. The prediction models will help to estimate the variation in die lifetime by finding the amount of wear that will occur during use of hot die steel, if the heat treatment parameters are varied to achieve different properties.


2015 ◽  
Vol 10 (3) ◽  
pp. 155892501501000 ◽  
Author(s):  
Elham Naghashzargar ◽  
Dariush Semnani ◽  
Saeed Karbasi

Finding an appropriate model to assess and evaluate mechanical properties in tissue engineered scaffolds is a challenging issue. In this research, a structurally based model was applied to analyze the mechanics of engineered tendon and ligament. Major attempts were made to find the optimum mechanical properties of silk wire-rope scaffold by using the back propagation artificial neural network (ANN) method. Different samples of wire-rope scaffolds were fabricated according to Taguchi experimental design. The number of filaments and twist in each layer of the four layered wire-rope silk yarn were considered as the input parameters in the model. The output parameters included the mechanical properties which consisted of UTS, elongation at break, and stiffness. Finally, sensitivity analysis on input data showed that the number of filaments and the number of twists in the fourth layer are less important than other input parameters.


2018 ◽  
Vol 7 (4.19) ◽  
pp. 778
Author(s):  
Abdul Kareem F. Hassan ◽  
Qahtan A. Jawad

This research involved a study of the heat treatment conditions effect on the mechanical properties of martensitic stainless steel type AISI 410. Heat treatment process was hardening of the metal by quenching at different temperature 900°C, 950°C, 1000°C, 1050°C and 1100°C, followed by double tempering at 200°C, 250°C, 300°C, 350°C, 400°C, 450°C, 500°C, 550°C, 600°C, 650°C and 700°C, were evaluated and study of some mechanical properties such as hardness, impact energy and properties of tensile test such as yield and tensile strength is carried out. Multiple outputs Artificial Neural Network model was built with a Matlab package to predict the quenching and tempering temperatures. Also, linear and nonlinear regression analyses (using Data fit package) were used to estimate the mathematical relationship between quenching and tempering temperatures with hardness, impact energy, yield, and tensile strength. A comparison between experimental, regression analysis and ANN model show that the multiple outputs ANN model is more accurate and closer to the experimental results than the regression analysis results. 


Materials ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 718 ◽  
Author(s):  
Xiaoyan Wu ◽  
Huarui Zhang ◽  
Haiyang Cui ◽  
Zhen Ma ◽  
Wei Song ◽  
...  

In this paper, an artificial neural network (ANN) model with high accuracy and good generalization ability was developed to predict and optimize the mechanical properties of Al–7Si alloys. The quantitative correlation formulas of the mechanical properties with Mg content and heat treatment parameters were established based on the transfer function and weight values. The relative importance of the input variables, Mg content and heat treatment parameters, on the mechanical properties of Al–7Si alloys were identified through sensitivity analysis. The results indicated that the mechanical properties of Al–7Si alloys were sensitive to Mg content and aging temperature. Then the individual and the combined influences of these input variables on the properties of Al–7Si alloys were simulated and the process parameters were optimized using the artificial neural network model. Finally, the proposed model was validated to be a robust tool in predicting the mechanical properties of the Al–7Si alloy by conducting experiments.


2010 ◽  
Vol 39 ◽  
pp. 555-561 ◽  
Author(s):  
Qing Hua Luan ◽  
Yao Cheng ◽  
Zha Xin Ima

The establishing of a precise simulation model for runoff prediction in river with several tributaries is the difficulty of flood forecast, which is also one of the difficulties in hydrologic research. Due to the theory of Artificial Neural Network, using Back Propagation algorithm, the flood forecast model for ShiLiAn hydrologic station in Minjiang River is constructed and validated in this study. Through test, the result shows that the forecast accuracy is satisfied for all check standards of flood forecast and then proves the feasibility of using nonlinear method for flood forecast. This study provides a new method and reference for flood control and water resources management in the local region.


Author(s):  
Yangping Li ◽  
Yangyi Liu ◽  
Sihua Luo ◽  
Zi Wang ◽  
Ke Wang ◽  
...  

Abstract The attractive mechanical properties of nickel-based superalloys primarily arise from an assembly of γ′ precipitates with desirable size, volume fraction, morphology and spatial distribution. In addition, the solutioning cooling rate after super solvus heat treatment is critical for controlling the features of γ′ precipitates. However, the correlation between these multidimensional parameters and mechanical hardness has not been well established to date. Scanning electron microscope (SEM) images with different γ′ precipitates were investigated in this study, and artificial neural network (ANN) method was used to build a microstructure-mechanical property model. The critical step in this work is to extract different microstructural features from hundreds of SEM images. In order to improve the accuracy of prediction, the cooling rate was also considered as the input. In this work, the methodology was proved to be capable of bridging microstructural features and mechanical properties under the inspiration of material genome spirit.


Sign in / Sign up

Export Citation Format

Share Document