scholarly journals Decoration of Vertically Aligned Carbon Nanotubes with Semiconductor Nanoparticles Using Atomic Layer Deposition

Materials ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1095 ◽  
Author(s):  
Anna Szabó ◽  
László Péter Bakos ◽  
Dániel Karajz ◽  
Tamás Gyulavári ◽  
Zsejke-Réka Tóth ◽  
...  

Vertically aligned carbon nanotubes (VACNTs or “CNT forest”) were decorated with semiconductor particles (TiO2 and ZnO) by atomic layer deposition (ALD). Both the structure and morphology of the components were systematically studied using scanning (SEM) and high resolution transmission electron microscopy (HRTEM), energy-dispersive X-ray spectroscopy (EDX), Raman spectroscopy, and X-ray diffraction (XRD) methods. Characterization results revealed that the decoration was successful in the whole bulk of VACNTs. The effect of a follow-up heat treatment was also investigated and its effect on the structure was proved. It was attested that atomic layer deposition is a suitable technique for the fabrication of semiconductor/vertically aligned carbon nanotubes composites. Regarding their technological importance, we hope that semiconductor/CNT forest nanocomposites find potential application in the near future.

2017 ◽  
Vol 46 (16) ◽  
pp. 5189-5201 ◽  
Author(s):  
Sherif Okeil ◽  
Jan Krausmann ◽  
Inga Dönges ◽  
Sandra Pfleger ◽  
Jörg Engstler ◽  
...  

ZnS nanoparticles have been synthesized on vertically aligned carbon nanotubes by gas-phase conversion of ZnO nanoparticles which have been tethered on vertically aligned carbon nanotubes using atomic layer deposition (ALD).


RSC Advances ◽  
2015 ◽  
Vol 5 (83) ◽  
pp. 68251-68259 ◽  
Author(s):  
L. F. Lampert ◽  
A. Barnum ◽  
S. W. Smith ◽  
J. F. Conley ◽  
J. Jiao

Vertically aligned alumina nanotubes created by atomic layer deposition onto carbon nanotubes scaffolds are synthesized and analyzed for phase transitionsviathermal annealing andin situelectron-irradiation induced crystallization.


Inorganics ◽  
2019 ◽  
Vol 7 (9) ◽  
pp. 113 ◽  
Author(s):  
Xinyu Mao ◽  
Alexandre C. Foucher ◽  
Eric A. Stach ◽  
Raymond J. Gorte

LaCoO3 films were deposited onto MgAl2O4 powders by atomic layer deposition (ALD) and then used as catalyst supports for Pt. X-ray diffraction (XRD) showed that the 0.5 nm films exhibited a perovskite structure after redox cycling at 1073 K, and scanning transmission electron microscopy and elemental mapping via energy-dispersive X-ray spectroscopy (STEM/EDS) data demonstrated that the films covered the substrate uniformly. Catalysts prepared with 3 wt % Pt showed that the Pt remained well dispersed on the perovskite film, even after repeated oxidations and reductions at 1073 K. Despite the high Pt dispersion, CO adsorption at room temperature was negligible. Compared with conventional Pt on MgAl2O4, the reduced forms of the LaCoO3-containing catalyst were highly active for the CO oxidation and water gas shift (WGS) reactions, while the oxidized catalysts showed much lower activities. Surprisingly, the reduced catalysts were much less active than the oxidized catalysts for toluene hydrogen. Catalysts prepared from thin films of Co3O4 or La2O3 exhibited properties more similar to Pt/MgAl2O4. Possible reasons for how LaCoO3 affects properties are discussed.


Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2207
Author(s):  
Tianyu Cao ◽  
Ohhun Kwon ◽  
Chao Lin ◽  
John M. Vohs ◽  
Raymond J. Gorte

CaTiO3 films with an average thickness of 0.5 nm were deposited onto γ-Al2O3 by Atomic Layer Deposition (ALD) and then characterized by a range of techniques, including X-ray Diffraction (XRD) and High-Resolution, Transmission Electron Microscopy (HRTEM). The results demonstrate that the films form two-dimensional crystallites over the entire surface. Lattice fringes from HRTEM indicate that the crystallites range in size from 5 to 20 nm and are oriented in various directions. Films of the same thickness on SiO2 remained amorphous, indicating that the support played a role in forming the crystallites.


2018 ◽  
Vol 32 (19) ◽  
pp. 1840074 ◽  
Author(s):  
Viral Barhate ◽  
Khushabu Agrawal ◽  
Vilas Patil ◽  
Sumit Patil ◽  
Ashok Mahajan

The spectroscopic study of La2O3 thin films deposited over Si and SiC at low RF power of 25 W by using indigenously developed plasma-enhanced atomic layer deposition (IDPEALD) system has been investigated. The tris (cyclopentadienyl) lanthanum (III) and O2 plasma were used as a source precursor of lanthanum and oxygen, respectively. The [Formula: see text]1.2 nm thick La2O3 over SiC and Si has been formed based on our recipe confirmed by means of cross-sectional transmission electron microscopy. The structural characterization of deposited films was performed by means of X-ray photoelectron Spectroscopy (XPS) and X-ray Diffraction (XRD). The XPS result confirms the formation of 3[Formula: see text] oxidation state of the lanthania. The XRD results reveals that, deposited La2O3 films deposited on SiC are amorphous in nature compare to that of films on Si. The AFM micrograph shows the lowest roughness of 0.26 nm for 30 cycles of La2O3 thin films.


Sign in / Sign up

Export Citation Format

Share Document