scholarly journals Primary Stability Optimization by Using Fixtures with Different Thread Depth According To Bone Density: A Clinical Prospective Study on Early Loaded Implants

Materials ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2398 ◽  
Author(s):  
Christian Makary ◽  
Abdallah Menhall ◽  
Carole Zammarie ◽  
Teresa Lombardi ◽  
Seung Yeup Lee ◽  
...  

Background: Macro- and micro-geometry are among the factors influencing implant stability and potentially determining loading protocol. The purpose of this study was to test a protocol for early loading by controlling implant stability with the selection of fixtures with different thread depth according to the bone density of the implant site. Materials and Methods: Patients needing implant therapy for fixed prosthetic rehabilitation were treated by inserting fixtures with four different thread diameters, selected based on clinical assessment of bone quality at placement (D1, D2, D3, and D4, according to Misch classification). Final insertion torque (IT) and implant stability quotient (ISQ) were recorded at baseline and ISQ measurements repeated after one, two, three, and four weeks. At the three-week measurement (four weeks after implant replacement), implants with ISQ > 70 Ncm were functionally loaded with provisional restorations. Marginal bone level was radiographically measured 12 months after implant insertion. Results: Fourteen patients were treated with the insertion of forty implants: Among them, 39 implants showing ISQ > 70 after 3 weeks of healing were loaded with provisional restoration. Mean IT value was 82.3 ± 33.2 Ncm and varied between the four different types of bone (107.2 ± 35.6 Ncm, 74.7 ± 14.0 Ncm, 76.5 ± 31.1 Ncm, and 55.2 ± 22.6 Ncm in D1, D2, D3, and D4 bone, respectively). Results showed significant differences except between D2 and D3 bone types. Mean ISQ at baseline was 79.3 ± 4.3 and values in D1, D2, D3, and D4 bone were 81.9 ± 2.0, 81.1 ± 1.0, 78.3 ± 3.7, and 73.2 ± 4.9, respectively. Results showed significant differences except between D1 and D2 bone types. IT and ISQ showed a significant positive correlation when analyzing the entire sample (p = 0.0002) and D4 bone type (p = 0.0008). The correlation between IT and ISQ was not significant when considering D1, D2, and D3 types (p = 0.28; p = 0.31; p = 0.16, respectively). ISQ values showed a slight drop at three weeks for D1, D2, and D3 bone while remaining almost unchanged in D4 bone. At 12-month follow-up, all implants (39 early loading, 1 conventional loading) had satisfactory function, showing an average marginal bone loss of 0.12 ± 0.12 mm, when compared to baseline levels. Conclusion: Matching implant macro-geometry to bone density can lead to adequate implant stability both in hard and soft bone. High primary stability and limited implant stability loss during the first month of healing could allow the application of early loading protocols with predictable clinical outcomes.

2016 ◽  
Vol 42 (1) ◽  
pp. 17-25 ◽  
Author(s):  
David E. Simmons ◽  
Archontia Palaiologou ◽  
Austin G. Teitelbaum ◽  
Susan Billiot ◽  
Lomesh J. Popat ◽  
...  

This investigation was undertaken to determine if multithreaded implants partially coated with plasma-sprayed hydroxyapatite (HA) could be effectively loaded earlier than 3–6 months after placement. Forty-eight patients (22 men, 26 women) were enrolled in the study and received 48 implants. The population was divided into 2 groups: A implants (n = 23) were loaded immediately on the day of surgery and group B implants (n = 19) were loaded 3 weeks after surgery. Cone beam computerized tomography (CBCT) scans were taken preoperatively to aid in treatment planning. Bone density was evaluated by tactile feedback during surgery. Insertion torque was recorded at time of implant placement. Resonance frequency analysis, performed on the day of surgery, at the time of loading, and at 6, 12, and 24 months, was used to record implant stability according to the unit's implant stability quotient (Osstell ISQ). Standardized radiographs were taken at time of implant placement and at 6, 12, and 24 months to measure crestal bone stability. Bone level changes were measured by software (Image J). Bone quality was judged as either type 1 (n = 1), 2 (n = 31), 3 (n = 15), or 4 (n = 1). There were no failures in the group A (survival = 100%, n = 23/23) and 1 failure in group B (survival = 94.7%, n = 18/19). After 2 years in function, cumulative mean radiographic bone loss was 0.75 ± 0.50mm (maxillae: 0.92 ± 0.49 mm, n = 14; mandibles: 0.67 ± 0.49 mm, n = 28). No differences in bone levels were noted between implants placed in previously augmented and nonaugmented sites, and there were no periodontal or soft tissue complications. After 2 years in function, implants partially coated with plasma-sprayed and hydrothermally treated HA were clinically predictable when restored in occlusion immediately after or within 3 weeks of implant placement.


Author(s):  
Javier Badenes ◽  
Antonio Pallarés

While many studies have related smoking to periimplantitis and marginal bone loss, little is known of its potential impact upon dental implant osseointegration. The present clinical study explores the influence of smoking upon secondary stabilization based on radiofrequency analysis. A total of 194 implants in 114 patients were included. Implant stability was evaluated on the day of surgery and a minimum of 90 days after implantation, when osseointegration is considered to have been completed. The evolution of implant stability was compared between two groups: smokers versus non-smokers. The following variables were also analyzed: implant brand, model, length and diameter, insertion torque, bone density according to the Misch classification, location of the implant, and patient age and gender. The results showed that smoking does not affect primary stability of the implant, though it was associated to a marked decrease in secondary stability. The non-smokers showed a gain of 2.69 points (95%CI: 1.529 to 3.865) in the osseointegration process with respect to the smokers (p<0.001). Among the latter, implant stability was seen to decrease 0.91 points (95%CI: -3.424 to 1.600) (p<0.004), generating a difference of 3.61 points between smokers and non-smokers. Smoking is thus concluded to be an important factor that must be taken into account when seeking good implant osseointegration outcomes.


2021 ◽  
Vol 11 (7) ◽  
pp. 2958
Author(s):  
Maciej Krawiec ◽  
Jakub Hadzik ◽  
Marzena Dominiak ◽  
Wojciech Grzebieluch ◽  
Artur Błaszczyszyn ◽  
...  

(1) Background: implant surface topology and active hydrophilic ions could have some benefit on implant osteointegration and stability; (2) methods: 40 adult patients, suffering from a single missing tooth in the aesthetic zone, were enrolled in the study. Each patient had a single titanium implant (Thommen SPI®lement) inserted. The implant surface was obtained through conditioning using the Apliquiq system. Patients were divided into two equal groups depending on the implant’s diameter (3.5 and 4.0 mm). Each implant was loaded within four weeks. Stability levels, using the Ostell device, were checked immediately after implant placement and in four weeks; additionally, marginal bone loss (MBL) was calculated based on 12 months; (3) results: all implants survived the study. The average primary stability achieved for both groups was initially 71.59 ISQ (±4.04) and declined to 69.94 ISQ (±3.29) in four weeks. The average MBL was 0.2 mm (±0.88). There were no statistically important differences between groups. There was a positive correlation between the patient’s age and implant stability quotient (ISQ) values; (4) conclusions: hydrophilic surface implants can be used in a protocol for early functional occlusal loading. Higher values of primary stability positively influence the values of secondary stability, and the age of the patient affects the values of implant stability.


2019 ◽  
Vol 7 (3) ◽  
pp. 73 ◽  
Author(s):  
Francesco Orlando ◽  
Federico Arosio ◽  
Paolo Arosio ◽  
Danilo Alessio Di Stefano

Previous results on synthetic blocks mimicking bone indicate that bone density can be measured by the friction encountered by a rotating probe while it descends into bone, and that primary implant stability may be measured through the integral (I) of the torque–depth curve at implant insertion. This study aims to repeat those tests on collagen-preserving equine bone blocks as they better reproduce the mechanical properties of natural bone. Fifteen cancellous equine blocks had their density measured using a measuring probe. This was compared to their known physical density through linear regression analysis. Implant placement was carried out into six cancellous equine blocks and primary stability was measured using (I), as well as the insertion torque (IT), the implant stability quotient (ISQ), and the reverse torque (RT). The relation between (I), (IT), (ISQ), and (RT) was investigated by correlation analysis. Bone density measured using the probe correlated significantly with actual density, both with (r = 0.764) and without irrigation (r = 0.977). (I) correlated significantly with IT and RT under all irrigation conditions, and with ISQ only without irrigation (r = 0.886). The results suggest that the probe provides actual bone density measurements. They also indicate that (I) measures primary implant stability and is more sensitive to density variations than IT, RT, and ISQ. Results are consistent with those obtained on synthetic blocks but suggest that equine bone blocks may better reproduce the mechanical properties of human cancellous alveolar bone. This should be the subject of additional studies.


2014 ◽  
Vol 40 (6) ◽  
pp. 670-678 ◽  
Author(s):  
Paul A. Schnitman ◽  
Chie Hayashi ◽  
Rita K. Han

Computer-assisted implant planning and subsequent production of a surgical template based on this plan has gained attention because it provides restoratively driven esthetics, patient comfort, satisfaction, and the option of flapless surgery and immediate restoration. However, it adds expense and requires more time. Another significant but not so apparent advantage may be improved survival and success over freehand techniques in types III and IV bone. This retrospective analysis was undertaken to examine that possibility. It reports 1-year outcome for 80 implants in 27 consecutively presenting patients treated over a 7-year period using computer-assisted techniques across all bone qualities in commonly encountered treatment indications in private practice. Implants were placed to support single teeth, small bridges, and complete arch restorations in exposed or immediately restored applications, based on primary stability as determined by insertion torque, resonance frequency analysis, and Periotest. For the 80 implants supporting 35 restorations, the median observation period is 2.66 years; 73 implants supporting prostheses in 22 patients had readable radiographs at 1 year. There was a 1-year overall implant survival and a success rate of 100%. Radiographic analysis demonstrated the change in bone level from the platform at 1-year is less than 2 mm. Intra-operative median measurements of primary stability were insertion torque, 40 Ncm; resonance frequency, 76 ISQ; and Periotest, −3. All intra-operative measurements were consistent for acceptable primary stability regardless of bone density. Restoratively driven diagnosis and precision planning and initial fit were possible with computer-assisted techniques resulting in the achievement of high primary stability, even in areas of less dense bone. The ability to plan implant position, drill sequence, and implant design on the basis of predetermined bone density gives the practitioner enhanced pretreatment information which can lead to improved outcome.


2020 ◽  
Vol 24 (1) ◽  
Author(s):  
Mahnaz Sheikhi ◽  
Mehdi Karami ◽  
Somayeh Abbasi ◽  
Amirhossein Moaddabi ◽  
Parisa Soltani

Objective: To evaluate the relationship between bone density measured by computed tomography (CT) and cone beam computed tomography (CBCT) (Sirona’s Galileos scanner) with primary stability of dental implants. Material and methods: 20 fresh bovine femoral heads were prepared by removal of soft tissue, sectioning of the bone, and placement of markers for location and angulation of implants. Bone density of peri-implant areas was determined preoperatively by CT and CBCT scanning of the prepared bone samples represented by Hounsfield units (HUs) and gray values (GVs), respectively. Then, 60 implants in three sizes (diameter = 4 mm, length = 8, 10, and 12 mm) were inserted into the bones and maximum insertion torque (IT) was recorded. Osstell device was also used for determining the implant stability quotient (ISQ) for each implant. Statistical analysis was performed on the data (alpha = 0.05). Results: Mean ± SD values of GV, HU, and ISQ were 1592.75 ± 231.82, 675.26 ± 115.38 and 61.90 ± 10.14, respectively. Moreover, the most frequent IT limit was 30-35 Ncm (41.4%). Significant relationships were observed between HU and IT, GV and IT, HU and ISQ, GV and ISQ, and IT and ISQ in all implant sizes. Moreover, GV and HU also significantly correlated to each other. Conclusion: Bone density values in CBCT and CT scans are positively associated to primary stability of dental implants. Therefore, GVs obtained from Galileos CBCT scanner can be used for preoperative selection of edentulous sites which allow for better implant stability or locations which require further procedures for enhancing the success rate of dental implants.  KEYWORDSComputed tomography; Cone beam computed tomography; Dental implant.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 270
Author(s):  
Ji-Hyun Kim ◽  
Young-Jun Lim ◽  
Bongju Kim ◽  
Jungwon Lee

The aim of the present study was to evaluate correlations between bone density and implant primary stability, considering various determinants such as age, gender, and geometry of implants (design, diameter). Bone density of edentulous posterior maxillae was assessed by computed tomography (CT)-derived Hounsfield units, and implant primary stability values were measured with insertion torque and resonance frequency analysis (RFA). A total of 60 implants in 30 partially edentulous patients were evaluated in the posterior maxilla with two different types of dental implants. The bone density evaluated by CT-derived Hounsfield units showed a significant correlation with primary stability parameters. The bone quality was more influenced by gender rather than age, and the type of implant was insignificant when determining primary stability. Such results imply that primary stability parameters can be used for objective assessment of bone quality, allowing surgical modifications especially in sites suspected of poor bone quality.


2017 ◽  
Vol 43 (2) ◽  
pp. 131-138 ◽  
Author(s):  
Yen-Ting Lin ◽  
Adrienne Hong ◽  
Ying-Chin Peng ◽  
Hsiang-Hsi Hong

Clinical decisions regarding the stability and osseointegration of mandibular implants positioned using the bone expansion techniques are conflicting and limited. The objective was to evaluate the stability of implants placed using 2 surgical techniques, selected according to the initial width of the mandibular posterior edentulous ridge, with D3 bone density, during a 12-week period. Fifty-eight implants in 33 patients were evaluated. Thirty-two implants in 24 patients were positioned using the osteotome expansion technique, and 26 fixtures in 17 patients were installed using the conventional drilling technique. The implant stability quotient values were recorded at weeks 0, 1, 2, 3, 4, 6, 8, 10, and 12 postsurgery and evaluated using analysis of variance, independent, and paired t tests. Calibrated according to the stability reading of a 3.3-mm diameter implant, the osteotome expansion group was associated with a lower bone density than the conventional group (64.96 ± 6.25 vs 68.98 ± 5.06, P = .011). The osteotome expansion group achieved a comparable primary stability (ISQb-0, P = .124) and greater increases in secondary stability (ISQb-12, P = .07) than did the conventional technique. A D3 quality ridge with mild horizontal deficiency is expandable by using the osteotome expansion technique. Although the 2 groups presented similar implant stability quotient readings during the study period, the osteotome expansion technique showed significant improvement in secondary stability. The healing patterns for these techniques are therefore inconsistent.


2019 ◽  
Vol 2019 ◽  
pp. 1-4 ◽  
Author(s):  
Antonio Scarano ◽  
Bartolomeo Assenza ◽  
Francesco Inchingolo ◽  
Filiberto Mastrangelo ◽  
Felice Lorusso

Background. The immediate placement of a dental implant could represent an option treatment for the rehabilitation of a postextractive missing tooth socket to replace compromised or untreatable teeth, with the advantage of single-session surgery. In this way, the anatomy of the alveolar bone defect, the preservation of the buccal cortical bone, and the primary stability of the fixture represent the critical factors that consent a precise implant placement. Objective. This case report describes a novel fixture design for postextractive alveolar socket immediate implant. Methods. Two patients (25 and 31 years old) were treated for postextractive dental implant placement to replace both central upper incisor teeth with four implants. The residual bone implant gap was not filled with graft or bone substitute. The restoration was provided following a standard loading protocol by a cement-sealed prosthetic abutment. Results. Clinically, all implants positioned showed an excellent insertion torque. No postoperative complications were reported. At 6 months of healing, the buccal cortical bone and the implant stability were present and well maintained. Conclusion. The evidence of this study allows us to underline the possible advantages of this new fixture design for postextractive implant technique.


2020 ◽  
Vol 9 (2) ◽  
pp. 60-70 ◽  
Author(s):  
Zhijun Li ◽  
Masaki Arioka ◽  
Yindong Liu ◽  
Maziar Aghvami ◽  
Serdar Tulu ◽  
...  

Aims Surgeons and most engineers believe that bone compaction improves implant primary stability without causing undue damage to the bone itself. In this study, we developed a murine distal femoral implant model and tested this dogma. Methods Each mouse received two femoral implants, one placed into a site prepared by drilling and the other into the contralateral site prepared by drilling followed by stepwise condensation. Results Condensation significantly increased peri-implant bone density but it also produced higher strains at the interface between the bone and implant, which led to significantly more bone microdamage. Despite increased peri-implant bone density, condensation did not improve implant primary stability as measured by an in vivo lateral stability test. Ultimately, the condensed bone underwent resorption, which delayed the onset of new bone formation around the implant. Conclusion Collectively, these multiscale analyses demonstrate that condensation does not positively contribute to implant stability or to new peri-implant bone formation. Cite this article: Bone Joint Res. 2020;9(2):60–70.


Sign in / Sign up

Export Citation Format

Share Document