scholarly journals Microstructure of Coatings on Nickel and Steel Platelets Obtained by Co-Milling with NiAl and CrB2 Powders

Materials ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 2593
Author(s):  
Maciej Szlezynger ◽  
Jerzy Morgiel ◽  
Łukasz Maj ◽  
Olena Poliarus ◽  
Paweł Czaja

Metal matrix composite coatings are developed to protect parts made from materials susceptible to wear, like nickel alloys or stainless steel. The industry-established deposition method is presently an atmospheric plasma spraying method since it allows the production of both well-adhering and thick coatings. Alternatively, similar coatings could be produced by co-milling of ceramic and alloyed powders together with metallic plates serving as substrates. It results in mechanical embedding of the powder particles into exposed metallic surfaces required coatings. The present experiment was aimed at the analysis of microstructure of such coatings obtained using NiAl and CrB2 powders. They were loaded together with nickel and stainless steel platelets into ball mill vials and rotated at 350 rpm for up to 32 h. This helped to produce coatings of a thickness up to ~40 µm. The optical, scanning, and transmission electron microscopy observations of the coatings led to conclusion that the higher the rotation speed of vials, the wider the intermixing zone between the coating and the substrate. Simultaneously, it was established that the total thickness of the coating deposited at specified conditions is limited by the brittleness of its nanocrystalline matrix. An increase in the hardness of the substrate results in a decrease of the intermixing zone. The above results indicate that even as the method based on mechanical embedding could so far produce thinner coatings than the plasma spraying, in the former case they are characterized by a more uniform nanocrystalline matrix with homogenously distributed fine ceramic particles.

2018 ◽  
Vol 941 ◽  
pp. 118-123
Author(s):  
Dagoberto Brandão Santos ◽  
Raphael França Assumpção ◽  
Daniela Barçante Perasoli ◽  
Dalila Chaves Sicupira

The UNS S32205 duplex stainless steel was warm rolled at 600°C with 60 and 80% of thickness reduction. The microstructure was characterized by optical, scanning and transmission electron microscopy, X-ray diffractometry and EBSD. The corrosion resistance was evaluated by electrochemical behavior in the chlorine ion environment using potentiodynamic polarization measurements. The tensile strength reached 1185 MPa and 1328 MPa, after warm rolling with 60 and 80%, respectively. In steel as-supplied, hot rolled and annealed, the tensile strength was 774 MPa. Ferrite microtexture presented the α-fiber and the rotated cube component, while the austenite enhanced the brass, copper, and cube components to a lesser extent. The substructure was characterized by intense formation of tangles and forests of dislocations and discrete subgrains in the ferritic phase and by planar gliding of dislocations and formation of dense dislocations walls in the austenite. Despite the existence of a certain similarity among the values of pitting potentials obtained for all samples, the number of pits observed was higher in the as-received sample, followed by the samples with 60 and 80% reduction. These results draw attention to innovative routes in the industrial production of duplex stainless steel of this class, even considering ductility lost. Keywords: Warm rolling; Mechanical strength; Texture; Substructure; Corrosion resistance


2019 ◽  
Vol 91 (8) ◽  
pp. 7-11 ◽  
Author(s):  
Monika Michalak ◽  
Leszek Łatka ◽  
Paweł Sokołowski ◽  
Andrzej Ambroziak

Atmospheric Plasma Spraying (APS) enables deposition of coatings from different materials, including those based on Al2O3 and TiO2. In this work, Al2O3 + 40 wt.% TiO2 coatings were tested. The relationships between mechanical properties, microstructure and spraying parameters (namely: spraying distance and torch scan velocity) were investigated. Commercial -45 + 5 μm powders in agglomerated as- produced state were sprayed onto the stainless steel 1.4301 substrates. The aim of the study was to determine the adhesion, microhardness and roughness of coatings but also to characterize their microstructure. It was observed that coatings sprayed from shorter distance were well melted and revealed good adhesion, but at the same time they were more porous and of lower microhardness than those deposited from the longer spraying distance.


2013 ◽  
Vol 67 (5) ◽  
pp. 753-757
Author(s):  
Marija Mihailovic ◽  
Aleksandra Pataric ◽  
Zvonko Gulisija ◽  
Zoran Janjusevic ◽  
Miroslav Sokic

For decades, the standard metallic materials for hip implants, besides the 316LVM stainless steel, were titanium- and cobalt/chromium-based alloys. Although bioinert, due to their corrosion resistance, they are not biocompatible. Contemporary surgical implants are not made just of bioinert metal anymore, but with deposited bioactive hydroxyapatite (HAp) coating. Hydroxyapatite is chemically identical with the mineral constituent of bones and teeth, what besides its biocompatibility provides bioactivity as well. The HAp limitations are, however, weak tensile strength and low fatigue resistance for long term loadings, if used alone. This is the reason for HAp to be deposited onto the surgical implant, and to enable its bioactivity, what means intergrowth with bones, and therefore the long-lasting and mechanical stable non-cemented prosthesis. This is important predominantly because the need for such prostheses for younger population, and a better life quality. There are several contemporary techniques that have been used for deposition of these coatings onto the metal implant. The possibilities of atmospheric plasma-spraying for obtaining the stable HAp coatings on the 316LVM stainless steel, ordinary used as a standard material for hip implants production are presented in this paper. The coatings of a commercially available hydroxyapatite powder were plasma-sprayed onto the specimens of medical grade 316LVM stainless steel under various operating conditions. The optical microscopy was used for microstructure and porosity characterization, while coating morphology and Ca/P ratio were analyzed using SEM equipped with EDX. Coating microstructure varied from a porous to a glassy structure, depending on operating conditions applied and coating thickness. Coating porosity was determined to be at the lower required limit requested for the bone-coating intergrowth possibility, but nevertheless adhesion measurements showed good results. The Ca/P ratio was determined for both as-deposited coatings and after ageing in distilled water for various time and temperature combination.


2013 ◽  
Vol 66 (2) ◽  
pp. 187-191 ◽  
Author(s):  
Tiago F. A. Santos ◽  
Ricardo R. Marinho ◽  
Marcelo T. P. Paes ◽  
Antonio J. Ramirez

UNS S32205 duplex stainless steel welds were performed by friction stir welding (FSW). Advancing and retreating sides showed distinct characteristics in the welded joint. The advancing side shows the strongest grain refinement which is corroborated by microhardness measurements. The microstructure characterization was carried out by optical, scanning and transmission electron microscopy. The thermomechanically affected zone displays austenite islands deformed in a ferrite matrix. The stir zone (SZ) showed a fine recrystallized microstructure providing an outstanding increase of hardness associated with better corrosion performance. Transmission electron microscopy and corrosion tests have corroborated the absence of intermetallic phases on welded joints.


2015 ◽  
Vol 44 (10) ◽  
pp. 2396-2400 ◽  
Author(s):  
Gao Peihu ◽  
Li Jianping ◽  
Yang Zhong ◽  
Guo Yongchun ◽  
Wang Yanrong

2007 ◽  
Vol 560 ◽  
pp. 67-72 ◽  
Author(s):  
R. Cuenca-Alvarez ◽  
H. Ageorges ◽  
Pierre Fauchais

The influence of dry particle coating on the properties of coatings produced by d.c. arc plasma spraying is reported. A mechanofusion process is used to coat coarser metallic particles with fine ceramic particles without using either binders or solvents. The key parameters affecting the mechanofusion process and the corresponding plasma spraying method have been varied in order to increase the hardness of the resulting composite coatings. Efforts have been made to disperse homogeneously hard particles (α-Al2O3, SiC) into a metallic matrix (316L stainless steel) and check if it is possible to limit the oxidation of metallic particles during their flight in the plasma jet flowing in air. The hardness of resulting composite coatings depends on the metallic particle size even when the hard ceramic particles are homogenously dispersed into the metallic matrix. Spraying mechanofused powder composed of finer stainless steel particles (64 ,m), results in finer structured deposits that show a higher oxide content. On the contrary, a low oxidation rate of the metallic matrix is observed when coarser metallic particles (120 ,m), covered by a binary layer of α-Al2O3 and SiC are sprayed.


2012 ◽  
Vol 557-559 ◽  
pp. 1768-1771
Author(s):  
Xiao Bing Zhao ◽  
Zhi Hui Ye

Fe-based amorphous coating was prepared on stainless steel substrates by atmospheric plasma spraying (APS) using Fe-based amorphous powder as feedstock. Microstructures of the coating were investigated by means of X-ray diffraction (XRD), scanning electron microscopy (SEM). The corrosion behavior of coating and stainless steel were evaluated respectively in 3.5% NaCl, 10% NaOH and 1 mol/L H2SO4 aqueous solutions by electrochemical workstation. The results indicated that the coating was composed of most amorphous phase and some Fe-Cr crystalline phase. The coating exhibited the better corrosion resistance in H2SO4 solution, while the worse in NaOH.


2018 ◽  
Vol 52 (19) ◽  
pp. 2597-2608
Author(s):  
Amal Chebbi ◽  
Vincent Guipont ◽  
Khaled Elleuch ◽  
Michel Jeandin

Ceramic plasma-sprayed coatings are successfully used for prolonging the service life of industrial components where high wear and corrosion resistance are required. In this work, various types of coatings based on alumina were deposited by atmospheric plasma spraying on 304 L austenitic stainless steel substrate. These coatings were used in further tribological studies. For the atmospheric plasma spraying applications, spraying parameter choices such as carrier gases, plasma enthalpy, current intensity, spraying distance, and particles granulometry are the key issues. Two kinds of Al2O3 particle sizes 2–12 µm (Amperit) and 15–45 µm (Norton) were used to prepare pure and composite coatings. The spraying distance was varied from 90 mm to 120 mm. Microstructure characterization performed by scanning electron microscopy showed that the Amperit powders projected at a distance of 90 mm provided better cohesion and a more dense microstructure. However, the choice of the spraying distance of 120 mm was defined to manufacture composite structures, which allowed more stability in the plasma jet and enabled large metal particles to be mixed with ceramics. To develop hard and wear-resistant coatings, alumina and 316SS were mixed with different addition rates by volume (Al2O3–5 vol.%316SS and Al2O3–25 vol.%316SS) and fed through a single injection port. Composite coatings include porosity and unmolten particles in a lamellar microstructure. The addition of 316SS powder led to the formation of typical layered structure due to the effect of viscosity and different densities of the two particles. These coatings were investigated by different tests to evaluate microhardness, cohesion, and fracture values of such materials. Despite the significant decrease in the microhardness values, the 316SS particle addition demonstrates an improvement in the toughness and crack resistance.


2019 ◽  
Vol 796 ◽  
pp. 47-54 ◽  
Author(s):  
Pavan Bijalwan ◽  
Anil Kumar ◽  
Sapan K. Nayak ◽  
Atanu Banerjee ◽  
Monojit Dutta ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document