scholarly journals Atomistic Simulation on the Twin Boundary Migration in Mg under Shear Deformation

Materials ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3129
Author(s):  
Shichao Song ◽  
Yu Wang ◽  
Yang Wang ◽  
Xi Wang

In this paper, the { 10 1 ¯ 2 } twinning and detwinning was studied by molecular dynamics simulation under different shear directions and strain rates. The results showed that the twin was thickened under [ 1 ¯ 011 ] shear direction and shrunken with shearing in the opposite direction. The critical resolved shear stress of { 10 1 ¯ 2 } twin boundary migration increased with the increase of the strain rate. By analyzing the atom’s displacement, it was concluded that the { 10 1 ¯ 2 } twin migration was achieved by both the shear and the atomic shuffling. Every atom would be affected by the shear, and different shear directions would cause opposite move directions, which led to twinning or detwinning. The atom shuffling was only used for adjusting the glide twin boundary and mirror-symmetric twin boundary structure evolution.

Nanomaterials ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 221 ◽  
Author(s):  
Xiaowen Hu ◽  
Yushan Ni ◽  
Zhongli Zhang

In order to study the effects of kink-like defects in twin boundaries on deformation mechanisms and interaction between dislocations and defects in twin boundaries under localized load, nanotwinned Cu with two defective twin (TDT) boundaries is compared with the nanotwinned Cu with two perfect twin (TPT) boundaries, and nanotwinned Cu with single defective twin (SDT) boundary and single perfect twin boundary by simulating spherical nanoindentations using molecular mechanics. The indenter force-depth and hardness-contact strain responses were analyzed. Results show that the existence of intrinsic defects in twin boundary could reduce the critical load and critical hardness of nanotwinned material. A quantitative parameter was first proposed to evaluate the degree of surface atom accumulation around the indenter during nanoindentation, and it can be inferred that the surface morphology in TDT changes more frequently than the surface morphologies in TPT and SDT. The atomistic configurations of incipient plastic structures of three different models were also analyzed. We found that the intrinsic defects in twin boundary will affect the incipient plastic structures. The formation of twinning partial slip on the defective twin boundary happens before the contact of the dislocation and twin boundary. The kink-like defects could introduce Frank partial dislocation to the twin boundary during interaction between dislocation and twin boundary, which was not detected on the perfect twin boundary. In addition, the area of twinning partial slips on the upper twin boundary in the incipient plastic structures in SDT and TDT are larger than the twinning partial slip area in TPT, which results in the reduction of the critical hardness in SDT and TDT. The kink-like defects could also block the expansion of twinning partial slip on the twin boundary. Furthermore, we investigated the dislocation transmission processes in three different models. It is found that the dislocation transmission event could be delayed in model containing single defective twin boundary, while the transmission process could be advanced in model containing two consecutive defective twin boundaries. The quantitative analysis of dislocation length was also implemented. Result shows that the main emitted dislocation during nanoindentation is Shockley partial, and the dislocation nucleation in SDT and TDT is earlier than the dislocation nucleation in TPT due to the existence of defects. It is inferred that the intrinsic defects on twin boundaries could enhance the interaction between dislocations and twin boundaries, and could strongly change the structure evolution and promote the dislocation nucleation and emission. These findings about kink-like defects in twin boundaries show that the inherent kink-like defects play a crucial role in the deformation mechanisms and it should be taken into consideration in future investigations. Single defective twin boundary structure is recommended to delay the transmission and block the expansion of twin boundary migration. Some of the results are in good agreement with experiments.


1991 ◽  
Vol 6 (11) ◽  
pp. 2291-2304 ◽  
Author(s):  
J.M. Rickman ◽  
S.R. Phillpot ◽  
D. Wolf ◽  
D.L. Woodraska ◽  
S. Yip

The migration of a (100) θ = 43.6°(Σ29) twist grain boundary is observed during the course of a molecular-dynamics simulation. The atomic-level details of the migration are investigated by determining the time dependence of the planar structure factor, a function of the planar interparticle bond angles, and the location of the center of a mass of planes near the grain boundary. It is found that a migration step consists of local bond rearrangements which, when the simulation cell is made large enough, produce domain-like structures in the migrating plane. Although no overall sliding is observed during migration, a local sliding of the planes near the migrating grain boundary accompanies the migration process. It is suggested that a three-dimensional cloud of thermally produced Frenkel-like point defects near the boundary accompanies, and facilitates, its migration.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Charles Oluremi Solanke ◽  
Dalibor Trapl ◽  
Zoran Šućur ◽  
Václav Mareška ◽  
Igor Tvaroška ◽  
...  

AbstractInteractions between proteins and their small molecule ligands are of great importance for the process of drug design. Here we report an unbiased molecular dynamics simulation of systems containing hevein domain (HEV32) with N-acetylglucosamine mono-, di- or trisaccharide. Carbohydrate molecules were placed outside the binding site. Three of six simulations (6 × 2 μs) led to binding of a carbohydrate ligand into the binding mode in agreement with the experimentally determined structure. Unbinding was observed in one simulation (monosaccharide). There were no remarkable intermediates of binding for mono and disaccharide. Trisaccharide binding was initiated by formation of carbohydrate-aromatic CH/π interactions. Our results indicate that binding of ligands followed the model of conformational selection because the conformation of the protein ready for ligand binding was observed before the binding. This study extends the concept of docking by dynamics on carbohydrate-protein interactions.


Materials ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 750
Author(s):  
Xiaoyue Yang ◽  
Shuang Xu ◽  
Qingjia Chi

In this study, molecular dynamics simulations were performed to study the uniaxial compression deformation of bi-crystal magnesium nanopillars with a { 10 1 ¯ 2 } twin boundary (TB). The generation and evolution process of internal defects of magnesium nanopillars were analyzed in detail. Simulation results showed that the initial deformation mechanism was mainly caused by the migration of the twin boundary, and the transformation of TB into (basal/prismatic) B/P interface was observed. After that, basal slip as well as pyramidal slip nucleated during the plastic deformation process. Moreover, a competition mechanism between twin boundary migration and basal slip was found. Basal slip can inhibit the migration of the twin boundary, and { 10 1 ¯ 1 } ⟨ 10 1 ¯ 2 ⟩ twins appear at a certain high strain level ( ε = 0.104). In addition, Schmid factor (SF) analysis was conducted to understand the activations of deformation modes.


2008 ◽  
Vol 22 (31n32) ◽  
pp. 5859-5864 ◽  
Author(s):  
SIZHU WU ◽  
JUN YI ◽  
LISHU ZHANG ◽  
LIQUN ZHANG ◽  
JAMES E. MARK

In this research, molecular dynamics(MD) simulations were used to study the transport properties of small gas molecules in poly(ethylene-co-1-hexene) copolymer. The condensed-phase optimized molecular potentials for atomistic simulation studies (COMPASS) forcefield was applied. The diffusion coefficients were obtained from MD (NVT ensemble). The results indicated that the diffusion coefficient of oxygen increased with increasing 1-hexene content in copolymer membrane.


2012 ◽  
Vol 5 (1) ◽  
pp. 21-27 ◽  
Author(s):  
Wenzheng Cui ◽  
Minli Bai ◽  
Jizu Lv ◽  
Xiaojie Li

Adding a small amount of nanoparticles to conventional fluids (nanofluids) has been proved to be an effective way for improving capability of heat transferring in base fluids. The change in micro structure of base fluids and micro motion of nanoparticles may be key factors for heat transfer enhancement of nanofluids. Therefore, it is essential to examine these mechanisms on microscopic level. The present work performed a Molecular Dynamics simulation on Couette flow of nanofluids and investigated the microscopic flow characteristics through visual observation and statistic analysis. It was found that the even-distributed liquid argon atoms near solid surfaces of nanoparticles could be seemed as a reform to base liquid and had contributed to heat transfer enhancement. In the process of Couette flow, nanoparticles moved quickly in the shear direction accompanying with motions of rotation and vibration in the other two directions. When the shearing velocity was increased, the motions of nanoparticles were strengthened significantly. The motions of nanoparticles could disturb the continuity of fluid and strengthen partial flowing around nanoparticles, and further enhanced heat transferring in nanofluids.


Author(s):  
M.J. Kim ◽  
H. Ma ◽  
R.W. Carpenter ◽  
S.H. Lin ◽  
O.F. Sankey

Grain boundary (GB) structure determination at an atomic level by HREM had received increasing attention in recent years. However, models of grain boundary structure deduced from the experiment results are usually not unique, and they do not necessarily represent the equilibrium structure. A newly developed quantum-molecular-dynamics (QMD) method, which does not depend on any empirical potentials, can be used to test these models and find the equilibrium atomic structure through simulated quenching. The method employs an electronic structure tight-binding model based on density functional theory within the local density approximation and the nonlocal pseudopotential scheme, and is used to compute the total energy and atomic forces for a variety of covalent materials. In the present study, this QMD method, coupled with image simulation, was used to predict the relaxed atomic configuration for the Σ=13 (510), [001] tilt grain boundary in Si.


Sign in / Sign up

Export Citation Format

Share Document