scholarly journals Modeling Shrinkage and Creep for Concrete with Graphene Oxide Nanosheets

Materials ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3153 ◽  
Author(s):  
Chen ◽  
Xu ◽  
Hua ◽  
Zhou ◽  
Wang ◽  
...  

In this study, the shrinkage and creep of concrete containing graphene oxide (GO) nanosheets were experimentally and theoretically investigated. Experiments for the shrinkage and creep of concrete with 0.02% and 0.08% GO nanosheets by the weight of cement and common concrete were carried out. Subsequently, the influence of GO nanosheets on the shrinkage and creep of concrete was analyzed and discussed. A modified model was developed to accurately predict the shrinkage and creep of concrete containing GO nanosheets after models for predicting shrinkage and creep of common concrete were compared and the influential factors and application scope were determined. Results indicate that: (1) GO nanosheets can increase the shrinkage strain and reduce the creep coefficient of concrete, and (2) a modified ACI209 (92) model can accurately predict the shrinkage and creep of concrete containing GO nanosheets. Factors considering concrete strength can be introduced in the model to improve the model accuracy.

Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 590 ◽  
Author(s):  
Zengshun Chen ◽  
Yemeng Xu ◽  
Jianmin Hua ◽  
Xu Wang ◽  
Lepeng Huang ◽  
...  

Graphene oxide (GO) has been widely used as an additive due to its numerous unique properties. In this study, the compressive strength, flexural strength and elasticity modulus of concrete containing 0.02 wt%, 0.05 wt % and 0.08 wt % GO, and its dry shrinkage performance have been experimentally investigated. After the sample preparation, apparatus for compression test and flexural test were used to test the relevant properties of concrete containing GO. The dial indicators were used to measure the shrinkage of samples. The results indicate that GO can considerably improve the compressive strength, flexural strength, and elasticity modulus of concrete at the concrete age of 28 days by 4.04–12.65%, 3.8–7.38%, and 3.92–10.97%, respectively, which are substantially smaller than the increment at the age of 3 d by 5.02–21.51%, 4.25–13.06%, and 6.07–27.45% under a water-cement ratio of 0.35. It was also found that GO can increase the shrinkage strain of concrete. For example, at the age of 60 days, 0.02 wt%, 0.05 wt% and 0.08 wt% GO can increase the shrinkage strain of ordinary concrete by 1.99%, 5.79% and 7.45% respectively under a water-cement ratio of 0.49. The study has advanced our understanding on mechanical and shrinkage behavior of concrete containing GO.


2013 ◽  
Vol 756-759 ◽  
pp. 2051-2054 ◽  
Author(s):  
Rui Fang Duan ◽  
Xiu Fen Huang ◽  
He Zhang

It is a complex problem that forecast and control the shrinkage and creep of concrete and influence on the performance of the structures.Through the conmparion of all kinds of common model,the article have also analysed the main influence factors about the concrete shrinkage and creep effect . The results showed that JTJ 85 model for shrinkage and creep effect tends to conservative calculation; the creep coefficient and shrinkage strain of JTG D62 model and the CEB-FIP model were basically consistent; and ACI 209 model underestimated the concrete shrinkage and creep effect. Theoretical depth of components was more sensitive to concrete shrinkage strain, and creep coefficient was smaller sensitivity; The effect of concrete creep increases with the decreasing of age at loading, when age of loading percentage increased from three to 28 days, the concrete creep effect of the terminal value reduced about 80%; The influence of environment average relative humidity on shrinkage and creep effect is more sensitive, when environment average relative humidity increased from 50% to 80%, creep coefficient nearly reduced about 30%,and shrinkage strain decreased 50%, in comparison, the influence of environment relative humidity chance on the concrete shrinkage effect is greater than that on creep effect.


2014 ◽  
Vol 638-640 ◽  
pp. 1059-1062
Author(s):  
Qing Xiang Zeng ◽  
Da Jian Han

The concrete shrinkage strain and creep coefficient calculation method in CEB - FIP MC90 model is briefly introduced. For application convenience in bridge design, a simplified formula for calculation of the concrete shrinkage strain and creep coefficient is derived. Considering the varying range of every influence factor, a correlation analysis for the factor is carried out. And the weights of those factors related to concrete shrinkage and creep coefficient are discussed. Considering the climate characteristics and the bridge structure features in the Pearl River Delta area, the variation ranges of concrete nominal shrinkage strain and nominal creep coefficient are calculated respectively.


2021 ◽  
Vol 164 ◽  
pp. 105979
Author(s):  
Xin Gao ◽  
Hengwei Zhang ◽  
Erjun Guo ◽  
Fei Yao ◽  
Zengze Wang ◽  
...  

Author(s):  
Junyu Chang ◽  
Xiaobo Zhang ◽  
Zhenming Wang ◽  
Chunsheng Li ◽  
Qi Hu ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4102
Author(s):  
Jan Stindt ◽  
Patrick Forman ◽  
Peter Mark

Resource-efficient precast concrete elements can be produced using high-performance concrete (HPC). A heat treatment accelerates hardening and thus enables early stripping. To minimise damages to the concrete structure, treatment time and temperature are regulated. This leads to temperature treatment times of more than 24 h, what seems too long for quick serial production (flow production) of HPC. To overcome this shortcoming and to accelerate production speed, the heat treatment is started here immediately after concreting. This in turn influences the shrinkage behaviour and the concrete strength. Therefore, shrinkage is investigated on prisms made from HPC with and without steel fibres, as well as on short beams with reinforcement ratios of 1.8% and 3.1%. Furthermore, the flexural and compressive strengths of the prisms are measured directly after heating and later on after 28 d. The specimens are heat-treated between 1 and 24 h at 80 °C and a relative humidity of 60%. Specimens without heating serve for reference. The results show that the shrinkage strain is pronouncedly reduced with increasing temperature duration and rebar ratio. Moreover, the compressive and flexural strength decrease with decreasing temperature duration, whereby the loss of strength can be compensated by adding steel fibres.


Carbon Trends ◽  
2021 ◽  
pp. 100074
Author(s):  
Lerato L Mokoloko ◽  
Boitumelo J Matsoso ◽  
Roy P. Forbes ◽  
Dean H. Barrett ◽  
Beatriz D. Moreno ◽  
...  

Small ◽  
2021 ◽  
pp. 2101483
Author(s):  
Mehmet Altay Unal ◽  
Fatma Bayrakdar ◽  
Hasan Nazir ◽  
Omur Besbinar ◽  
Cansu Gurcan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document