scholarly journals Piezoelectric Characteristics of 0.55Pb(Ni1/3Nb2/3)O3-0.45Pb(Zr,Ti)O3 Ceramics with Different MnO2 Concentrations for Ultrasound Transducer Applications

Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4115 ◽  
Author(s):  
Myeongcheol Kang ◽  
Lae-Hyong Kang

In this study, we investigate the piezoelectric characteristics of 0.55Pb(Ni1/3Nb2/3)O3-0.45Pb(Zr,Ti)O3 (PNN-PZT) with MnO2 additive (0, 0.25, 0.5, 1, 2, and 3 mol%). We focus on the fabrication of a piezoelectric ceramic for use as both actuator and sensor for ultrasound transducers. The actuator and sensor properties of a piezoelectric ceramic depend on the piezoelectric strain coefficient d and piezoelectric voltage coefficient g, related as g = d/εT. To increase g, the dielectric constant εT must be decreased. PNN-PZT with MnO2 doping is synthesized using the conventional solid-state reaction method. The electrical properties are determined based on the resonant frequencies and vibration modes measured by using an impedance analyzer. The MnO2 addition initially improves the tetragonality of the PNN-PZT ceramic, which then saturates at a MnO2 content of 1 mol%. Therefore, the dielectric constant and piezoelectric coefficient d33 steadily decrease, while the mechanical properties (Qm, Young’s modulus), tanδ, electromechanical coupling coefficient k, and piezoelectric voltage coefficient g were improved at 0.5–1 mol% MnO2 content.

2016 ◽  
Vol 859 ◽  
pp. 8-12 ◽  
Author(s):  
Guo Yuan Cheng ◽  
Xing Hua Fu ◽  
Wen Hong Tao ◽  
Yu Zhang ◽  
Wen Xin Ma ◽  
...  

In this paper, (K0.5Na0.53)0.932Nb0.932O3-0.008BF-0.06LS (abbreviated as KNN-BF-LS) piezoelectric ceramic was prepared by sol-gel method. Structure and properties of ceramics were analyzed.Through analysis of the results, when sintering temperature is 1080°C, ceramic has good perovskite structure. At this temperature, grain size is more uniform, and structure is the most dense. Piezoelectric constant d33, electromechanical coupling coefficient Kp, dielectric constant εr reached the maximum value, respectively, 113pC/N, 0.33, 591. Dielectric loss tanδ reached the minimum 0.11.


2009 ◽  
Vol 66 ◽  
pp. 238-241
Author(s):  
Xiao Fang Liu ◽  
Hua Jun Sun ◽  
Ming Wei ◽  
C.X. Xiong

The Nb modified PZT piezoelectric ceramic was synthesized by conventional solid-state reaction, where all of different particle sizes had the same physical properties. 0-3 modified PZT/PVDF composites were formed by hot-pressing method. The particle size effect of modified PZT on the relative dielectric and piezoelectric properties of the composites were investigated. The relative dielectric constant εr, piezoelectric constant d33 and electromechanical coupling factor kp were higher in the composite containing larger PZT particle size. The microstructures of the composites were studied by SEM, the composite with the finer PZT particle size was more homogeneous, but larger particle size was easy to be contacted. In a high volume fraction particle-loaded composite, some piezoelectric ceramic particle appeared to be in contact, as in a 1-3 connectivity pattern. The larger particle size of modified PZT itself could be seen as the grain of modified PZT contact in a 1-3 connectivity pattern and easy to be contacted each other compared to the finer particle size in the composites, thus reducing the resistance of the composites and the poling process became effective, which led to higher properties. The optimal particle size of PZT is about 100μm, the Nb modified PZT/PVDF (volume fraction 70/30) composite show higher dielectric and piezoelectric properties than the others, εr=156.6, d33=69pC/N and kp=0.358.


2015 ◽  
Vol 1087 ◽  
pp. 50-54 ◽  
Author(s):  
Mohamad Johari Abu ◽  
Julie Juliewatty Mohamed ◽  
Mohd Fadzil Ain ◽  
Zainal Arifin Ahmad

CaCu(3+x)Ti4O12 (CCTO) ceramics with different Cu-excess (x = 0 – 0.6) were prepared by conventional solid-state reaction method. Characterization of the prepared ceramics with XRD and FESEM showed that lattice parameter and grain size are slightly increased, indicating Cu-excess to have the big impact on the both phase structure and microstructure. The XRD profiles indicated that the secondary phase (CuO or Cu2O) existed at edge/corner of CCTO grain, which promoted inhibited grain growth behavior. The CCTO ceramics exhibited two trends of dielectric constant related to frequency, which showed a flatter curve about ~50 in 1 – 25 GHz regions, and it’s dropped rapidly to ~35 in 25 – 50 GHz region. With Cu-excess, the dielectric constant of the ceramics was increased for an average of a quarter-order of magnitude, while the tangent loss also increased up to triple times than x = 0, for the same frequency range. Despite enormous increase of dielectric constant related to varying Cu-excess, the tangent loss also increased.


2010 ◽  
Vol 123-125 ◽  
pp. 161-164
Author(s):  
Dong Yu Xu ◽  
Shi Feng Huang ◽  
Chao Ju ◽  
Zong Zhen Zhang ◽  
Xin Cheng ◽  
...  

Periodic and non-periodic 1-3 type cement based piezoelectric composites were fabricated by cut and filling technique, using P(MN)ZT ceramic as functional material and cement as matrix. The influences of periodicity of piezoelectric ceramic rods in the composites on electrical properties of all the composites were discussed. The results show that the non-periodic composites have larger dielectric factor and piezoelectric strain constant than those of the periodic composite. The impedance-frequency spectra analysis indicates that the non-periodic arrangement of ceramic rods can effectively restrict the lateral structural mode of the composite, accordingly reduces the coupling resonant between the thickness resonant mode and lateral resonant mode. The thickness electromechanical coupling coefficient of non-periodic composites is larger than that of the periodic composite. With increasing the non-periodic level of P(MN)ZT ceramic in the composites, the mechanical quality factor of the composites increases gradually. Therefore, 1-3 type cement based piezoelectric composites with different special abilities can be obtained by varying the periodic arrangement of P(MN)ZT ceramic rods in the composites.


2018 ◽  
Vol 280 ◽  
pp. 142-148 ◽  
Author(s):  
Norhizatol Fashren Muhamad ◽  
Rozana Aina Maulat Osman ◽  
Mohd Sobri Idris ◽  
Faizal Jamlos ◽  
Nor Azura Malini Ahmad Hambali

Present investigation provides experimental studies on cylindrical dielectric resonator antennas (CDRAs) fabricated from SrTi1-xZrxO3ceramic with different substitution of Zr in place of Ti for (0 ≤ x ≤1). Ceramic powder were prepared using conventional solid state reaction method. X-ray Diffraction exposes physical properties Zr-doped SrTiO3which exhibit phase transition from cubic, tetragonal to orthorhombic phase. The electrical properties such as dielectric constant (εr) and dielectric loss (tan δ) were studied in variation of temperatures and frequencies. At room temperature the dielectric constant decreased from 240 to 21 with increase of Zr content however the amazing result was obtained for multiband antenna by Zr content. The dielectric loss obtain shows very low loss value roughly below 0.07 for all samples. The variations of return loss, resonance frequency and bandwidth of CDRAs at their respective resonant frequencies are studied experimentally.


Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4785
Author(s):  
Xiaoyu Wang ◽  
Shuyu Lin

The radial vibration of a radial composite tubular transducer with a large radiation range and power capacity is studied. The transducer is composed of a longitudinally polarized piezoelectric ceramic tube and a coaxial outer metal tube. Assuming that the longitudinal length is much larger than the radius, the electromechanical equivalent circuits of the radial vibration of a piezoelectric ceramic long tube and a metal long tube are derived and obtained for the first time following the plane strain theory. As per the condition of the continuous forces and displacements of two contact surfaces, the electromechanical equivalent circuit of the tubular transducer is obtained. The radial resonance/anti-resonance frequency equation and the expression of the effective electromechanical coupling coefficient are obtained. Then, the effects of the radial geometry dimension of the transducer on the vibration characteristics are analyzed. The theoretical resonance frequencies, anti-resonance frequencies, and the effective electromechanical coupling coefficients at the fundamental mode and the second mode are in good agreement with the finite element analysis (FEA) results. The study shows that when the overall size of the transducer is unchanged, as the proportion of piezoelectric ceramic increases, the radial resonance/anti-resonance frequency and the effective electromechanical coupling coefficient of the transducer at the fundamental mode and the second mode have certain characteristics. The radial composite tubular transducer is expected to be used in high-power ultrasonic wastewater treatment, ultrasonic degradation, and underwater acoustics, as well as other high-power ultrasonic fields.


2017 ◽  
Vol 866 ◽  
pp. 259-262 ◽  
Author(s):  
Puripat Kantha ◽  
Kamonpan Pengpat ◽  
Nuttapon Pisitpipathsin

Lead-free Ba0.9Ca0.1Sn0.06Ti0.94-xZrxO3 (BCTSZ) ceramics where x = 0.00, 0.03, 0.05, 0.07 and 0.09 were prepared by the conventional solid-state reaction method. The dielectric constant of the Zr doped BCTS ceramic was enhanced by Zr incorporation. The maximum dielectric constant were obtained at the composition of x = 0.05. The dielectric property investigation indicated that the degree of the diffuse phase transition behavior increased with Zr substitution. Phase transition of tetragonal to cubic structure was significantly dependent on the amount of Zr added.


2010 ◽  
Vol 150-151 ◽  
pp. 1470-1475
Author(s):  
Gui Lin Song ◽  
Tian Xing Wang ◽  
Cun Jun Xia ◽  
Chao Li ◽  
Fang Gao Chang

Multiferroic Bi1-xGdxFeO3(x=0, 0.05, 0.1, 0.15, 0.2) ceramics were prepared by conventional solid state reaction method. For all the samples prepared, they exhibit magnetoelectric effect at room temperature, and the dielectric constant and dielectric loss decrease with increasing frequency in the range from 10000Hz to 1 MHz from a typical orientational dielectric relaxation process. It has been found that both dielectric constant and dielectric loss are strongly dependent on the Gd3+ content. And substitution of Bi with rare earth Gd helps to eliminate the impurity phase in BiFeO3 ceramics.,


2007 ◽  
Vol 280-283 ◽  
pp. 145-150 ◽  
Author(s):  
Ping Huang ◽  
Ting Xian Xu ◽  
Feng Hou ◽  
Qiang Zou

Strontium bismuth titanate (SBTi) matrix composites containing Ag particles were synthesized by the conventional solid-state reaction method. The SBTi/Ag composites have been characterized by various techniques: x-ray diffraction, optical metallurgical microscope, scanning electron microscope and dielectric measurement. It is found that Ag doping significantly affect the physical properties of composites. By adding Ag particles to the SBTi matrix, the single-phase layered perovskite structure of the matrix is preserved and the sintering temperature of the system decrease from 1120°C of the single-phase SBTi to 950°C of the SBTi/Ag composites. With the increase of sintering temperature, the size of silver particles increase, but the SBTi grains have no significant growth. The SBTi/Ag composites show a significant change of the dielectric constant. By increasing Ag content, a gradual increase of the dielectric constant is observed and the dielectric loss of the SBTi/Ag composites remain unchanged when the temperature rangers from room temperature to 200°C, however, the Curie peak of dielectric constant is repressed, which has been interpreted based on the effective dielectric fields developed around conducting phases and the inhibition effect of nonferroelectric secondary phase to electro-strain.


Sign in / Sign up

Export Citation Format

Share Document