scholarly journals First-Principles Calculations of the Electronic Structure and Optical Properties of Yttrium-Doped ZnO Monolayer with Vacancy

Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 724
Author(s):  
Qian Wu ◽  
Ping Wang ◽  
Yan Liu ◽  
Han Yang ◽  
Jingsi Cheng ◽  
...  

The electronic structures and optical characteristics of yttrium (Y)-doped ZnO monolayers (MLs) with vacancy (zinc vacancy, oxygen vacancy) were investigated by the first-principles density functional theory. Calculations were performed with the GGA+U (generalized gradient approximation plus U) approach, which can accurately estimate the energy of strong correlation semiconductors. The results show that the formation energy values of Y-doped ZnO MLs with zinc or oxygen vacancy (VZn, VO) are positive, implying that the systems are unstable. The bandgap of Y-VZn-ZnO was 3.23 eV, whereas that of Y-VO-ZnO was 2.24 eV, which are smaller than the bandgaps of pure ZnO ML and Y-doped ZnO MLs with or without VO. Impurity levels appeared in the forbidden band of ZnO MLs with Y and vacancy. Furthermore, Y-VZn-ZnO will result in a red-shift of the absorption edge. Compared with the pure ZnO ML, ZnO MLs with one defect (Y, VZn or VO), and Y-VZn-ZnO, the absorption coefficient of Y-VO-ZnO was significantly enhanced in the visible light region. These findings demonstrate that Y-VO-ZnO would have great application potential in photocatalysis.

2010 ◽  
Vol 154-155 ◽  
pp. 124-129
Author(s):  
Zhen Zhen Weng ◽  
Zhi Gao Huang ◽  
Wen Xiong Lin

The interatomic exchange interactions and the electronic structure of Co-doped ZnO with and without oxygen vacancy have been investigated by the first-principles calculations based on density functional theory. It is found that the oxygen vacancy can strengthen the ferromagnetic exchange interaction between Co atoms and might be available for carrier mediation. The oxygen vacancy near to the Co atoms is more favorable for the ferromagnetic ground state.


2017 ◽  
Vol 19 (5) ◽  
pp. 3679-3687 ◽  
Author(s):  
Tao Yang ◽  
Masahiro Ehara

Using density functional theory calculations, we discussed the geometric and electronic structures and nucleation of small Co clusters on γ-Al2O3(100) and γ-Al2O3(110) surfaces.


2006 ◽  
Vol 84 (2) ◽  
pp. 115-120 ◽  
Author(s):  
G Y Gao ◽  
K L Yao ◽  
Z L Liu

First-principles calculations of the electronic structure are performed for cubic BaTbO3 using the plane-wave pseudopotential method within the framework of density functional theory and using the generalized gradient approximation for the exchange-correlation potential. Our calculations show that cubic BaTbO3 is metallic, and that this metallic character is mainly governed by the Tb 4f electrons and the hybridization between the Tb 5d and O 2p states. From the analysis of the density of states, band structure, and charge density contour, we find that the chemical bonding between Tb and O is covalent while that between Ba and TbO3 is ionic. PACS Nos.: 71.15.Mb, 71.20.-b


Author(s):  
Javaria Batool ◽  
Syed Muhammad Alay-e-Abbas ◽  
Gustav Johansson ◽  
Waqas Zulfiqar ◽  
Muhammad Arsam Danish ◽  
...  

The thermodynamic, structural, magnetic and electronic properties of pristine and intrinsic vacancy defect containing topological Dirac semimetal Ba3SnO are studied using first-principles density functional theory calculations. The thermodynamic stability of...


RSC Advances ◽  
2016 ◽  
Vol 6 (54) ◽  
pp. 49214-49220 ◽  
Author(s):  
Xiaofeng Li ◽  
Junyi Du

Using an unbiased structure search method based on particle-swarm optimization algorithms in combination with density functional theory calculations, we investigate the phase stability and electronic properties of NbB3 under high pressures.


2011 ◽  
Vol 684 ◽  
pp. 1-29 ◽  
Author(s):  
Peter Entel ◽  
Antje Dannenberg ◽  
Mario Siewert ◽  
Heike C. Herper ◽  
Markus E. Gruner ◽  
...  

The structural and magnetic order are the decisive elements which vastly determine the properties of smart ternary intermetallics such as X2YZ Heusler alloys. Here, X and Y are transition metal elements and Z is an element from the III-V group. In order to give a precise prescription of the possibilities to optimize the magnetic shape memory and magnetocaloric effects of these alloys, we use density functional theory calculations. In particular, we outline how one may find new intermetallics which show higher Curie and martensite transformation temperatures when compared with the prototypical magnetic shape-memory alloy Ni2MnGa. Higher operation temperatures are needed for technological applications at elevated temperatures.


2005 ◽  
Vol 864 ◽  
Author(s):  
Jinyu Zhang

AbstractUsing density functional theory (DFT) calculations within the generalized gradient approximation (GGA), we have investigated the structure, energies and diffusion behavior of Si defects including interstitial, vacancy, FFCD and divacancy in various charged states.


2007 ◽  
Vol 06 (03) ◽  
pp. 523-529 ◽  
Author(s):  
WENZHEN LAI ◽  
HONG RAN ◽  
DAIQIAN XIE

The adsorption of CN on Cu (111) has been investigated using density functional theory calculations based on plane-wave expansion and pseudo-potential treatment. Calculations within the generalized gradient approximation predicted a preference for CN in the fcc C -down site. No stationary points corresponding to pure parallel mode were found. But the tilted mode was found to be achievable. The calculated vibrational frequencies of CN were used to correctly discriminate between the adsorption sites.


2016 ◽  
Vol 30 (14) ◽  
pp. 1650219
Author(s):  
Soraya Jácome ◽  
Arvids Stashans

Study of corundum-type chromium oxide ([Formula: see text]-Cr2O3) crystal doped with the nitrogen and magnesium impurities has been carried out through the use of first-principles calculations based on the density functional theory (DFT) and generalized gradient approximation (GGA). Three cases corresponding different impurity–impurity distances have been considered. Structural, electronic and magnetic properties have been studied for all co-doping cases. The [Formula: see text]-type electrical conductivity was found when distance between the Mg and N atoms is equal to 4.10 Å. The results obtained are consistent with the available experimental data.


2016 ◽  
Vol 94 (3) ◽  
pp. 328-333
Author(s):  
Yasemin Ö. Çiftci

In this study, the structural, elastic, electronic, and bonding nature of AgZn in B2 structure under pressure have been investigated by performing first principles calculations using density functional theory. The exchange-correlation potentials were treated within the generalized gradient approximation. The calculated quantities agree well with the available results. The electronic properties, such as band structure and density of states reveal that AgZn is metallic in nature with a large overlap at the Fermi level. The single-crystal elastic stiffness constants of AgZn are investigated using the stress–strain method. Present results for elastic constants show that AgZn is mechanically stable. The chemical bonding is interpreted by calculating the density of states and electron density distribution analysis. AgZn has ionic bonding characteristic.


Sign in / Sign up

Export Citation Format

Share Document