Electronic structure and elastic properties of AgZn under pressure from first-principles calculations

2016 ◽  
Vol 94 (3) ◽  
pp. 328-333
Author(s):  
Yasemin Ö. Çiftci

In this study, the structural, elastic, electronic, and bonding nature of AgZn in B2 structure under pressure have been investigated by performing first principles calculations using density functional theory. The exchange-correlation potentials were treated within the generalized gradient approximation. The calculated quantities agree well with the available results. The electronic properties, such as band structure and density of states reveal that AgZn is metallic in nature with a large overlap at the Fermi level. The single-crystal elastic stiffness constants of AgZn are investigated using the stress–strain method. Present results for elastic constants show that AgZn is mechanically stable. The chemical bonding is interpreted by calculating the density of states and electron density distribution analysis. AgZn has ionic bonding characteristic.

2006 ◽  
Vol 84 (2) ◽  
pp. 115-120 ◽  
Author(s):  
G Y Gao ◽  
K L Yao ◽  
Z L Liu

First-principles calculations of the electronic structure are performed for cubic BaTbO3 using the plane-wave pseudopotential method within the framework of density functional theory and using the generalized gradient approximation for the exchange-correlation potential. Our calculations show that cubic BaTbO3 is metallic, and that this metallic character is mainly governed by the Tb 4f electrons and the hybridization between the Tb 5d and O 2p states. From the analysis of the density of states, band structure, and charge density contour, we find that the chemical bonding between Tb and O is covalent while that between Ba and TbO3 is ionic. PACS Nos.: 71.15.Mb, 71.20.-b


2005 ◽  
Vol 864 ◽  
Author(s):  
Jinyu Zhang

AbstractUsing density functional theory (DFT) calculations within the generalized gradient approximation (GGA), we have investigated the structure, energies and diffusion behavior of Si defects including interstitial, vacancy, FFCD and divacancy in various charged states.


2016 ◽  
Vol 30 (14) ◽  
pp. 1650219
Author(s):  
Soraya Jácome ◽  
Arvids Stashans

Study of corundum-type chromium oxide ([Formula: see text]-Cr2O3) crystal doped with the nitrogen and magnesium impurities has been carried out through the use of first-principles calculations based on the density functional theory (DFT) and generalized gradient approximation (GGA). Three cases corresponding different impurity–impurity distances have been considered. Structural, electronic and magnetic properties have been studied for all co-doping cases. The [Formula: see text]-type electrical conductivity was found when distance between the Mg and N atoms is equal to 4.10 Å. The results obtained are consistent with the available experimental data.


2013 ◽  
Vol 27 (12) ◽  
pp. 1350046
Author(s):  
HAVVA BOGAZ OZISIK ◽  
KEMAL COLAKOGLU ◽  
ENGIN DELIGOZ

The thermodynamic properties of AgB 2 and AuB 2 compounds in AlB 2 and OsB 2-type structures are investigated from first-principles calculations based on density functional theory (DFT) using projector augmented waves (PAW) potentials within the generalized gradient approximation (GGA) for modeling exchange-correlation effects, respectively. Specifically, using the quasi-harmonic Debye model, the effects of pressure and temperature, up to 100 GPa and 1400 K, on the bulk modulus, Debye temperature, thermal expansion, heat capacity and the Grüneisen parameter are calculated successfully and trends are discussed.


2021 ◽  
Author(s):  
Yun-Dan Gan ◽  
Han Qin ◽  
Fu-Sheng Liu ◽  
Zheng-Tang Liu ◽  
Cheng lu Jiang ◽  
...  

Abstract The electronic, optical and vibrational properties of B3N3H6 have been calculated by means of first-principles density functional theory (DFT) calculations within the generalized gradient approximation (GGA) and the local density approximation (LDA). The calculated structural parameters of B3N3H6 are in good agreement with experimental work. With the band structure and density of states (DOS), we have analyzed the optical properties including the complex dielectric function, refractive index, absorption, conductivity, loss function and reflectivity. By the contrast, it is found that on the (001) component and (100) component have obvious optical anisotropy. Moreover, the vibrational properties have been obtained and analyzed.


SPIN ◽  
2018 ◽  
Vol 08 (04) ◽  
pp. 1850016 ◽  
Author(s):  
O. Sebaa ◽  
Y. Zaoui ◽  
K. O. Obodo ◽  
H. Bendaoud ◽  
L. Beldi ◽  
...  

Understanding of different magnetic configurations for the FeAs2 iron pnictide compound is carried out using first-principles studies based on spin density functional theory (DFT) within the generalized gradient approximation (GGA), including the spin–orbit coupling (SOC). The calculated stable phase is in the marcasite (Pnnm) with nonmagnetic spin-ordering. We find that the FeAs2 compound in the nonmagnetic (NM) marcasite phase undergoes pressure-induced phase transition to the antiferromagnetic (AFM1) marcasite phase at 12[Formula: see text]GPa, then to the AFM CuAl2 ([Formula: see text]4/mcm) phase at 63[Formula: see text]GPa. The phase transition is also accompanied by semiconducting (marcasite phase) to metallic (CuAl2 phase) transition. The calculated electronic density of states profile shows the hybridization of the Fe-3[Formula: see text] and As-4[Formula: see text] orbitals plays an important role in determining the electronic and magnetic characters of this compound. The associated phase transition results in increased Fe-3d orbitals around the Fermi energy level.


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 724
Author(s):  
Qian Wu ◽  
Ping Wang ◽  
Yan Liu ◽  
Han Yang ◽  
Jingsi Cheng ◽  
...  

The electronic structures and optical characteristics of yttrium (Y)-doped ZnO monolayers (MLs) with vacancy (zinc vacancy, oxygen vacancy) were investigated by the first-principles density functional theory. Calculations were performed with the GGA+U (generalized gradient approximation plus U) approach, which can accurately estimate the energy of strong correlation semiconductors. The results show that the formation energy values of Y-doped ZnO MLs with zinc or oxygen vacancy (VZn, VO) are positive, implying that the systems are unstable. The bandgap of Y-VZn-ZnO was 3.23 eV, whereas that of Y-VO-ZnO was 2.24 eV, which are smaller than the bandgaps of pure ZnO ML and Y-doped ZnO MLs with or without VO. Impurity levels appeared in the forbidden band of ZnO MLs with Y and vacancy. Furthermore, Y-VZn-ZnO will result in a red-shift of the absorption edge. Compared with the pure ZnO ML, ZnO MLs with one defect (Y, VZn or VO), and Y-VZn-ZnO, the absorption coefficient of Y-VO-ZnO was significantly enhanced in the visible light region. These findings demonstrate that Y-VO-ZnO would have great application potential in photocatalysis.


2014 ◽  
Vol 13 (08) ◽  
pp. 1450069 ◽  
Author(s):  
Freddy Marcillo ◽  
Arvids Stashans

First-principles calculations based on the density functional theory (DFT) within the generalized gradient approximation have been used in the present research. Fluorine doping in the SnO 2 crystals has been carried out considering a number of different defect concentrations. Dopant influence upon structural, electronic and electrical properties of the tin dioxide has been discussed in detail. The system presents n-type electrical conductivity relating our work directly to a number of empirical studies in this area. An experimental fact that n-type conductivity tends to decrease at rather high fluorine impurity rates has been explained at the theoretical level.


2010 ◽  
Vol 156-157 ◽  
pp. 1385-1388
Author(s):  
Rui Qing Xu ◽  
Lan Fang Yao ◽  
Lin Li ◽  
Shuo Wang ◽  
Lin Lin Tian ◽  
...  

First-principles calculations using the plane-wave pseudo-potential (PWPP) method based on the density functional theory (DFT) is employed to study the crystal structure, band gap, density of states of anatase TiO2 doped with gadolinium (Gd). The generalized gradient approximation (GGA) based on exchange-correlation energy optimization is employed to calculate them. The calculated results demonstrate that the mixing of gadolinium dopants induces states with original titanium 3d and oxygen 2p valence band attributes to the band gap narrowing. This can enhance the photocatalytic activity of anatase TiO2.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Jian Zheng ◽  
Huijun Zhang ◽  
Xiaosong Zhou ◽  
Jianhua Liang ◽  
Liusi Sheng ◽  
...  

First-principles calculations within density functional theory have been performed to investigate the behaviors of helium inα-zirconium. The most favorable interstitial site for He inα-Zr is not an ordinary tetrahedral or octahedral site, but a basal octahedral site with a formation energy as low as 2.40 eV. The formation energy reduces to 1.25 eV in the presence of preexisting vacancies. The analysis on the density of states and the charge density has been carried out. In addition, the influences of He and small He-V complexes on the elastic properties have been studied. The He-V complexes have been found to greatly affect the elastic properties compared with He alone.


Sign in / Sign up

Export Citation Format

Share Document