scholarly journals Preparation and Characterization of Soap-Free Vinyl Acetate/Butyl Acrylate Copolymer Latex

Materials ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 865 ◽  
Author(s):  
Yifu Zhang ◽  
Wenkai Bei ◽  
Zhiyong Qin

The soap-free emulsion of vinyl acetate (VAc)/butyl acrylate (BA) copolymer was prepared by a semi-continuous and pre-emulsification polymerization method, using ammonium sulfate allyloxy nonylphenoxy poly(ethyleneoxy) (10) ether (DNS-86) as a reactive emulsifier. The effects of DNS-86 on the stability of the emulsion and the properties of the latex film were investigated. The infrared spectrum, thermal stability, glass transition temperature and micromorphology of latex were also studied. The results showed that the emulsion had the best stability and the conversion rate reached a maximum of 98.46% when the DNS-86 amount was 4 wt % of the total amount of monomers. Compared with the PVAc latex synthesized with octylphenol polyoxyethylene ether (10) (OP-10), the latex prepared with DNS-86 has higher thermal stability and ionic stability, whereas the latex film has better water resistance.

Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2500
Author(s):  
Sebastian M. Dron ◽  
Maria Paulis

The film formation step of latexes constitutes one of the challenges of these environmentally friendly waterborne polymers, as the high glass transition (TG) polymers needed to produce hard films to be used as coatings will not produce coherent films at low temperature. This issue has been dealt by the use of temporary plasticizers added with the objective to reduce the TG of the polymers during film formation, while being released to the atmosphere afterwards. The main problem of these temporary plasticizers is their volatile organic nature, which is not recommended for the environment. Therefore, different strategies have been proposed to overcome their massive use. One of them is the use of hydroplasticization, as water, abundant in latexes, can effectively act as plasticizer for certain types of polymers. In this work, the effect of three different grafted hydroplasticizers has been checked in a (meth)acrylate copolymer, concluding that itaconic acid showed the best performance as seen by its low minimum film-formation temperature, just slightly modified water resistance and better mechanical properties of the films containing itaconic acid. Furthermore, film formation monitoring has been carried out by Differential Scanning Calorimety (DSC), showing that itaconic acid is able to retain more strongly the water molecules during the water losing process, improving its hydroplasticization capacity.


2018 ◽  
Vol 47 (4) ◽  
pp. 290-299 ◽  
Author(s):  
Sainan Zhang ◽  
Xiankai Jiang

Purpose The purpose of this paper is to synthesize and characterize a series of two-component aromatic waterborne polyurethane (2K-WPU) which is composed of non-ionic and anionic polyisocyanate aqueous dispersion and polyurethane polyol aqueous dispersion. Design/methodology/approach The polyisocyanate aqueous dispersion was synthesized through non-ionic and anionic hydrophilic modification procedures. The values of the hydrogen bonding index (HBI) and molecule structures of WPU were obtained by Fourier transform infrared (FTIR). The thermal, mechanical and water resistance properties of 2K-WPU films were investigated. Findings The appearance of non-ionic polyisocyanate aqueous dispersion and anionic polyisocyanate aqueous dispersion was colorless translucent pan blue and yellow opaque emulsions, respectively. FTIR not only showed that 2K-WPU was obtained from the polymerization of polyisocyanate component and polyhydroxy component by polymerization but also showed that the content of hydrogen bondings of anionic 2K-WPU (WPU 2) was higher than non-ionic 2K-WPU (WPU 1). The glass-transition temperature (Tg), storage modulus and water resistance of WPU 2 were higher than WPU1, whereas the thermal stability of WPU1 was better than WPU 2. Practical implications The investigation established a method to prepare a series of 2K-WPU which was composed of non-ionic or anionic polyisocyanate aqueous dispersion and polyurethane polyol aqueous dispersion. The prepared 2K-WPU film could be applied as substrate resin material in the field of waterborne coating. Originality/value The paper established a method to synthesize a series of 2K-WPU. The effect of HBI value and the molecule structure of soft segment on the thermal stability, mechanical and water resistance properties of 2K-WPU films were studied.


Author(s):  
M. S. El-Aasser ◽  
T. Makgawinata ◽  
S. Misra ◽  
J. W. Vanderhoff ◽  
C. Pichot ◽  
...  

2005 ◽  
Vol 83 (6-7) ◽  
pp. 553-558 ◽  
Author(s):  
Bilal Baradie ◽  
Patricia HM Lai ◽  
Molly S Shoichet

Fluorosilicone polymers combine the properties of both fluorocarbons and siloxanes, yielding materials with unique properties. Novel crosslinked fluorosilicone polymers were synthesized by grafting diisocyanate-terminated polydimethylsiloxane (PDMS) to hydroxyl-functionalized fluoropolymers of poly(tetrafluoroethylene-co-vinyl acetate-co-vinyl alcohol) (PTFE-VAc-VA), as confirmed by elemental bulk and surface analysis. The fluorosilicone polymers containing 34 mol% of TFE were thermally stable with a degradation temperature of 267 °C. Fluorosilicone films were found to be more hydrophobic than the parent, non-grafted fluoropolymers; dynamic advancing and receding water contact angles for PTFE-co-VAc-co-VA-g-PDMS were 104° ± 1° and 61° ± 1°, respectively, whereas for PTFE-co-VAc they were 90° ± 2° and 59° ± 2°. The combined properties of thermal stability and hydrophobicity suggest that these fluorosilicones may be useful for coating and paint applications.Key words: fluoropolymers, fluorosilicone, polydimethylsiloxane, supercritical carbon dioxide.


1999 ◽  
Vol 591 ◽  
Author(s):  
P. S. Lee ◽  
D. Mangelinck ◽  
K. L. Pey ◽  
J. Ding ◽  
T. Osipowicz ◽  
...  

ABSTRACTThe formation and thermal stability of Ni- and Ni(Pt) silicide on narrow polycrystalline Si (poly-Si) lines have been investigated using the non-destructive micro-Raman technique. The presence of Ni or Ni(Pt)Si on poly-Si lines with linewidths ranging from 0.5 gtm to 0.25 μm has been monitored by a distinct Raman peak at around 215 cm−1. Ni(Pt)Si was clearly identified to be present up to a RTA temperature of 900°C on narrow poly-Si lines as compared to pure NiSi which was found only up to 750°C. Raman scattering from the 100×100 μm2 poly-Si pads showed the formation of NiSi2 at 750°C for pure Ni-salicidation and 900°C for Ni(Pt)-salicidation respectively. The difference in the stability of NiSi on the poly-Si pads and lines is discussed in terms of agglomeration, inversion and/or nucleation of NiSi2that could be due to difference in nucleation sites and/or stress. In addition, a correlation between the line sheet resistance and the presence of Ni silicide was found using micro-Raman mapping along single poly-Si lines.


2013 ◽  
Vol 395-396 ◽  
pp. 367-370
Author(s):  
Cai Hua Gao ◽  
Wen Lu Guo ◽  
Zhi Ming Jin

The acrylic emulsion adhesive was modified by D4 and KH570 with chemical process, and we can get the modified product successfully via the best technology parameter which was confirmed by orthogonal experiment. The structure of acrylic was characterized by FTIR, while there was a comparative study on the macroscopic properties and thermal stability of the unmodified and modified product. The results showed that when m(D4):m(KH570) was 2:1, the dosage of emulsifier was 3.0%, the dosage of KPS was 4.0%, the monomer(soft and hard) ratio was 1:1, the stability of the acrylic emulsion adhesive modified by double siloxane was good, and its viscosity, water resistance, heat resistance were improved greatly.


2012 ◽  
Vol 580 ◽  
pp. 548-551
Author(s):  
Yi Ming Sun ◽  
Xia Xie ◽  
Xu Huang Chen ◽  
Yan Lin Chen

Copolymer emulsions containing fluorine were prepared by emulsion polymerization with MMA, BA and G06B using SDBS as emulsifier. The copolymer was characterized by FTIR and DSC. The size and distribution of the latex particle in emulsion were obtained by particle size analyzer. The stability of emulsion was observed and the solvent resistance of latex films was investigated. Surface properties of the copolymer film were investigated by contact angle measurement. The results showed that adding fluorine group to copolymer could increase hydrophobic property of the latex film and decrease the surface free energy of copolymer film. Glass fiber will have excellent properties when combining with the copolymer emulsion.


1995 ◽  
Vol 7 (4) ◽  
pp. 481-492 ◽  
Author(s):  
Rajendra K Singh ◽  
Rooma Mago Mehta ◽  
R G Bass

A series of eight novel extended poly(phenylquinoxalines) (PPQs) containing carbonyl, ether and sulphide linking groups were prepared by polycondensation of 4,4'-bis(phenylglyoxalyl-4-phenoxy-4'-benzoyl)diphenyl sulphide, I-D, and 4,4'-bis(phenyl glyoxalyl-4-phenylthio-4'-benzoyl)diphenyl sulphide, 2-D, with four aromatic bis(o-diamines) in m-cresol. The primary objective of this study was to correlate the effect of these linkages on the various properties such as solubility, thermal stability and glass transition temperature of the PPQs. Polymerization of 1-D was carried out in an oil bath maintained at 195-200C whereas polymerization of 2-D was performed at ambient temperature. The polymers prepared were soluble in m-cresol. dimethylsulphoxide, N,N-dimethylacetamide, I-methyl-2-pyrrolidinone and chlorinated hydrocarbon solvents, and formed tough transparent, yellow fingernail-creasable films from chloroform solutions. The inherent viscosities ranged between 0.44 and 0.96 dl g' '. The glass transition temperatures were nearly identical for both systems and ranged from 217-231 'C for polymers prepared from l-D and from 215-233"C for polymers prepared from 2-D. The PPQs having carbonyl and stJlphide linking groups had higher thermal stability in comparison to PPQs having carbonyl, ether and sulphide linkages. The temperature of 10% weight loss for I-D ranged from 484-496 'C in air and 485-516"C in helium whereas those for 2-D ranged from 538-579 XC in air and 522-549 in helium.


Sign in / Sign up

Export Citation Format

Share Document