scholarly journals Analysis of the Rolling Process of Alloy 6005 in a Three-High Skew Rolling Mill

Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1114 ◽  
Author(s):  
Teresa Bajor ◽  
Anna Kulakowska ◽  
Henryk Dyja

This paper presents the results of numerical modelling of the rolling process of aluminum alloy bars in a three-high skew mill. The purpose of the examination was to determine the optimal rolling temperature for this alloy. The numerical examination for aluminum alloy 6005 (AlZn5.5MgCu) was performed using the Forge3®-2D Plane strain state commercial software. The rheological properties of the examined alloy were determined from uniaxial compression tests done using the metallurgical process simulation system Gleeble 3800. The numerical analysis of the process of rolling 6005 alloy bars in a three-high skew mill was conducted within the temperature range of 150–350 °C and at a deformation of 0.29.

Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 764
Author(s):  
Jarosław Bartnicki ◽  
Yingxiang Xia ◽  
Xuedao Shu

The paper presents chosen aspects of the skew rolling process of hollow stepped products with the use of a skew rolling mill designed and manufactured at the Lublin University of Technology. This machine is characterized by the numerical control of spacing between the working rolls and the sequence of the gripper axial movement, which allows for the individual programming of the obtained shapes of parts such as stepped axles and shafts. The length of these zones and the values of possibly realizable cross-section reduction and obtained outlines are the subject of this research paper. The chosen results regarding the influence of the technological parameters used on the course of the process are shown in the present study. Numerical modelling using the finite element method in Simufact Forming, as well as the results of experimental tests performed in a skew rolling mill, were applied in the conducted research. The work takes into account the influence of cross-section reduction of the hollow parts and the feed rate per rotation on the metal flow mechanisms in the skew rolling process. The presented results concern the obtained dimensional deviations and changes in the wall thickness determining the proper choice of technological parameters for hollow parts formed by the skew rolling method. Knowledge about the cause of the occurrence of these limitations is very important for the development of this technology and the choice of the process parameters.


2016 ◽  
Vol 716 ◽  
pp. 864-870
Author(s):  
Andrzej Stefanik ◽  
Piotr Szota ◽  
Sebastian Mróz ◽  
Teresa Bajor ◽  
Sonia Boczkal

This paper presents the research results of the microstructure changes of the round rods of AZ31 magnesium alloy in the hot rolling processes. The rolling was conducted in duo mill and a three-high skew rolling mill. Numerical modelling of the AZ31 magnesium alloy round rods rolling process was conducted using a computer program Forge 2011®. The verification of the results of numerical modelling was carried out during laboratory tests in a two-high rolling mill D150 and a three-high skew rolling mill RSP 40/14. Distributions of the total effective strain and temperature during AZ31 rods rolling process were determined on the basis of the theoretical analysis. Microstructure and texture changes during both analysed processes were studied.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4277
Author(s):  
Umut Hanoglu ◽  
Božidar Šarler

The purpose of the present paper is to predict the grain size of steel during the hot-rolling process. The basis represents a macroscopic simulation system that can cope with temperatures, stresses and strains of steel in a complete continuous rolling mill, including reversible pre-rolling and finishing rolling with several tenths of rolling passes. The grain size models, newly introduced in the present paper, are one-way coupled to the macro-scale calculations performed with the slice model assumption. Macroscale solution is based on a novel radial basis function collocation method. This numerical method is truly meshless by involving the space discretization in arbitrarily distributed nodes without meshing. A new efficient node generation algorithm is implemented in the present paper and demonstrated for irregular domains of the slice as they appear in different rolling passes. Multiple grain size prediction models are considered. Grain size prediction models are based on empirical relations. Austenite grain size at each rolling pass as well as the ferrite grain size at the end of rolling are predicted in this simulation. It is also shown that based on the rolling schedule, it is highly likely that recrystallization takes place at each pass throughout a continuous rolling mill. The simulation system is coded as a user-friendly computer application for industrial use based on programing language C# and an open source developer platform .NET and runs on regular personal computers The computational time for a typical rolling simulation is usually less than one hour and can thus be straightforwardly used to optimize the rolling mill design in a reasonable time.


2021 ◽  
Vol 21 (2) ◽  
Author(s):  
Janusz Tomczak ◽  
Zbigniew Pater ◽  
Tomasz Bulzak ◽  
Konrad Lis ◽  
Tomasz Kusiak ◽  
...  

AbstractResults of a study investigating a skew rolling process for elongated axisymmetric parts are presented. Despite the fact that the skew rolling technique for producing such parts was developed and implemented in the mid-twentieth century, there are no studies on this problem. The first part of this paper presents the results of FEM modelling of skew rolling stepped axles and shafts (solid and hollow). The FEM analysis was performed using the MSC Simufact Forming software. The numerical simulation involved the determination of metal flow patterns, the analysis of thermal parameters of the material during rolling, and the prediction of cracking by the Cockcroft-Latham ductile fracture criterion. Force parameters of rolling solid and hollow parts were also determined. The aim of the FEM analysis was to determine initial design assumptions and parameters for the development of the skew rolling mill. Later on in the paper, a design solution of a CNC skew rolling mill for rolling parts based on their envelope profile is proposed. FEM strength test results of a mill stand, obtained with MSC. NASTRAN, are presented. Finally, the performance test results of the constructed rolling mill are presented. The experiments involved rolling real stepped shafts that were modelled numerically. Obtained results show that the proposed skew rolling method has considerable potential. The designed and constructed rolling mill can be used to perform the rolling process according to the proposed method, with the tool and material kinematics being controlled based on the set parameters of a workpiece envelope.


2015 ◽  
Vol 60 (2) ◽  
pp. 809-813 ◽  
Author(s):  
A. Stefanik ◽  
A. Morel ◽  
S. Mróz ◽  
P. Szota

Abstract Technology of round bars rolling on a three-high skew rolling mills allows rolling of standard materials such as steel and aluminum, as well as new materials, especially hard deformable materials. The paper presents the results of theoretical and experimental rolling process of aluminum bars with a diameter of 20 mm. As the stock round bars with a diameter of 25 mm made of aluminum grade 1050A and aluminum alloy grade 2017A were used. The rolling process of aluminum bars has been carried out in a single pass. The numerical analysis was carried out by using computer program Forge2011®. On the basis of theoretical research it has been determined the state of deformation, stress and temperature distribution during rolling of aluminum bars. In addition, the results of theoretical research allowed to determine the schema of the metal plastic flow in the roll gap. Verification of the theoretical research was carried out during the rolling of aluminum bars on the RSP 40/14 laboratory three-high skew rolling mill. From the finished bars were taken the samples to set the shape and compared with the results of theoretical research. Finished aluminum round bars were characterized by low ovality and good surface quality.


Author(s):  
Marcin Buczaj ◽  
Andrzej Sumorek

The article presents the concept and capabilities of a computer system for analysing measurement data for a skew rolling mill used to produce steel balls. The computer system for data acquisition and analysis consists of cooperating systems designed to perform control and measurement tasks during the operation of a skew rolling mill. Their main task is to collect and record data related to the measured physical parameters of the batch rolling process. This system registers the current and analyses the radial forces and torque acting on the rolled element by the rolling tool. The process of data acquisition, analysis and archiving is carried out by means of an NI USB 6009 measuring card together with the attached systems of transducers and force and torque sensors and a computer with an installed application. The measurement application was developed in the LabVIEW environment. The application algorithm is based on the state machine architecture and enables the configuration of measurement elements and technical parameters, checking the functioning of the control and measurement system and the acquisition and archiving of measurement data.


Author(s):  
Chang-Qing Huang ◽  
Jie Deng ◽  
Si-Xu Wang ◽  
Lei-lei Liu

Isothermal interrupted hot compression tests of 5754 aluminum were conducted on Gleeble-3500 thermo-mechanical simulator at temperature 350 °C and 450 °C, strain rate 0.1 s-1 and 1s−1. These tests simulated flat rolling to investigate how softening behaviors respond to controlled parameters, such as deformation temperature, strain rate and delay times. This data allowed the parameters for the hot rolling process to be optimized. The delay times during interrupted compression vary between 5s and 60s. The dynamic softening at each pass and metadynamic recrystallization at the intervals of deformation passes were analyzed in detail. 0.2% offset yield strength is applied to calculate the softening fraction undergoing metadynamic recrystallization. A kinetic model was developed to describe metadynamic recrystallization behaviors of the hot deformed 5754 aluminum alloy. Furthermore, the time constant for 50% recrystallization was expressed as functions related to the temperature and the strain rate. The experimental and calculated results were found to be in close agreement, which verified the developed model.


2015 ◽  
Vol 60 (2) ◽  
pp. 801-807 ◽  
Author(s):  
A. Tofil ◽  
J. Tomczak ◽  
T. Bulzak

Abstract The paper presents a selection of numerical and theoretical results of the cross wedge rolling process for producing stepped shafts made of aluminum alloy 6061. The numerical modeling was performed using the FEM-based Simufact Forming simulation software. In the simulations, we examined the kinematics of metal flow and determined the distribution patterns of effective strains, temperatures, axial stresses and the Cockroft-Latham damage criterion. Variations in the rolling forces were determined, too. The numerical results were verified experimentally using a universal rolling mill designed and constructed by the present authors. This machine can be used to perform such processes as cross wedge rolling, longitudinal rolling and round bar cropping. During the experiments, we examined process stability and finished product geometry and recorded the torques. The experimental results confirm that axisymmetric aluminum alloy shafts can be produced by cross wedge rolling with two rolls. Last but not least, the experiments served to evaluate the technological potential of the rolling mill used.


2021 ◽  
Vol 24 (1) ◽  
Author(s):  
Piotr Chyła

This paper presents the results of metallographic research studies carried out for stock materials as well as the samples collected from the balls formed in the rolling process in a skew rolling mill. The stock material was bearing steel 100Cr6 and the steel from rail scrap. The rolling process was carried out in parallel for the two assumptions: the conventional method (hereinafter referred to as conventional rolling) and the modified method (hereinafter referred to as modified rolling). After the rolling process, three cooling media were used: air, water and oil. The pictures below, which depict microstructures, were taken using the bright-field and the dark-field microscopy technique, the samples were etched with a 4% solution of picral.


Sign in / Sign up

Export Citation Format

Share Document