scholarly journals Experimental Investigation on the Freeze–Thaw Resistance of Steel Fibers Reinforced Rubber Concrete

Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1260
Author(s):  
Tao Luo ◽  
Chi Zhang ◽  
Chaowei Sun ◽  
Xinchao Zheng ◽  
Yanjun Ji ◽  
...  

The reuse of rubber in concrete results in two major opposing effects: an enhancement in durability and a reduction in mechanical strength. In order to strengthen the mechanical properties of rubber concrete, steel fibers were added in this research. The compressive strength, the four-point bending strength, the mass loss rate, and the relative dynamic elastic modulus of steel fiber reinforced rubber concrete, subjected to cyclic freezing and thawing, were tested. The effects of the content of steel fibers on the freeze–thaw resistance are discussed. The microstructure damage was captured and analyzed by Industrial Computed Tomography (ICT) scanning. Results show that the addition of 2.0% steel fibers can increase the compressive strength of rubber concrete by 26.6% if there is no freeze–thaw effect, but the strengthening effect disappears when subjected to cyclic freeze–thaw. The enhancement of steel fibers on the four-point bending strength is effective under cyclic freeze–thaw. The effect of steel fibers is positive on the mass loss rate but negative on the relative dynamic elastic modulus.

2022 ◽  
Vol 2022 ◽  
pp. 1-14
Author(s):  
Qi Li ◽  
Fei Xu ◽  
Hemin Zheng ◽  
Junhao Shi ◽  
Jianyu Zhang

Crumb Rubber Concrete (CRC) can exhibit high freeze-thaw resistance, but its long-term creep behavior under various freeze-thaw conditions remains unclear, which is essential for the safety of pavement engineering in the severe cold zone. In this study, the freeze-thaw effects on the creep behavior of CRC under different stress levels were systematically analyzed by testing the compressive strength, the uniaxial creep under different stress levels, and the dynamic elastic modulus. To simulate real conditions of the road environment in the cold area, the lowest temperature of −20°C, six freeze-thaw cycles of 0, 30, 60, 90, 120, and 150, and seven different stress levels of 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9 of the compressive strength were employed in this study. The test results showed that the mass loss rate was 6%–11.2% and the compressive strength decreased by 6.51%–47% after 30–150 freeze-thaw cycles. When the stress level reached its critical value, the relative dynamic elastic modulus decreased with the number of freeze-thaw cycles. After 150 freeze-thaw cycles, failure did not appear when the stress level was lower than 50%, above which the creep failure was determined by the stress level and the number of the freeze-thaw cycles. Meanwhile, it was found that the cracking and interfacial debonding between the matrix and the crumb rubber particle were the main reasons for the degradation of CRC creep performance. Finally, a Weibull distribution-based empirical creep damage model was established to predict the failure of CRC, which can enhance its application to related engineering.


2012 ◽  
Vol 446-449 ◽  
pp. 2595-2598 ◽  
Author(s):  
Yin Hua Ma ◽  
Jian Yi Gu

In this paper, the authors study the anti-freeze-thaw performance of a new type of semi-rigid base material named polypropylene fiber reinforced cement-stabilized aggregate, and freeze-thaw mass loss rate, freeze-thaw compressive strength, freeze-thaw splitting strength are used to evaluate the effect of polypropylene fiber on the anti-freeze-thaw performance, and the relationship of polypropylene fiber content, polypropylene fiber length with the anti-freeze-thaw performance are analyzed. The test after 10 freeze-thaw cycle shows that the mix of polypropylene fiber increase the freeze-thaw compressive strength and freeze-thaw splitting strength, and decrease the mass loss rate greatly. At the same time, the paper also determine the reasonable fiber content and fiber length, under this mix proportion, the mass loss rate reduce by 80%, the freeze-thaw compressive strength increase more than 12.1% and freeze-thaw splitting strength increase more than 13.4%. This research has laid an important foundation for the follow-up research and practice.


2012 ◽  
Vol 476-478 ◽  
pp. 1661-1664
Author(s):  
Jun Fang Huo ◽  
Jian Jun Chu ◽  
Hui Yang

Different amount of pumice were used to replace gravel to make mixed aggregate concrete, the fast freeze-thaw cycle test were conducted and the influence of pumice rate substitution to the frost resistance properties of concrete were studied.The mass loss rate, strength loss and relative dynamic elastic modulus were regarded as the evaluation index of frost resistance properties of concrete. Results showed that the mass loss rate and strength loss rate gradually decreased and the relative dynamic elastic modulus gradually increased with the increase of pumice rate, the mass loss rate, strength loss rate and the relative dynamic elastic modulus gradually decreased with the increase of freeze-thaw cycles. Polypropylene fibers could reduce the strength loss rate, improved the relative dynamic elastic modulus, but had little effect to improve the mass loss. Through the frost resistance, the frost resistance of concrete improved with the increase of pumice content, at the same time, polypropylene fiber also could improve the frost resistance of concrete.


2010 ◽  
Vol 163-167 ◽  
pp. 1655-1660
Author(s):  
Jian Zhang ◽  
Bo Diao ◽  
Xiao Ning Zheng ◽  
Yan Dong Li

The mechanical properties of high strength concrete(HSC) were experimentally investigated under mixed erosion and freeze-thaw cycling according to ASTM C666(Procedure B), the erosion solution was mixed by weight of 3% sodium chloride and 5% sodium sulfate. The mass loss, relative dynamic modulus of elasticity, compressive strength, elastic modulus and other relative data were measured. The results showed that with the increasing number of freeze-thaw cycles, the surface scaled more seriously; the mass loss, compressive strength and elastic modulus continued to decrease; the relative dynamic modulus of elasticity increased slightly in the first 225 freeze-thaw cycles, then decreased in the following 75 cycles; the corresponding strain to peak stress decreased with the increase of freeze-thaw cycles. After 200 cycles, the rate of deterioration of concrete accelerated obviously.


2014 ◽  
Vol 1044-1045 ◽  
pp. 624-628
Author(s):  
Jie Quan Xing ◽  
Shu Lin Zhan ◽  
Xin Yu Li

This paper studies the influence on compressive strength, freezing resistance and microstructure of cement mortar with different content of mica in stone powder, in the tests, manufactured sand with high content of mica and natural river sand were mixed with different proportion, and the content of stone powder was the same in mixed sand. Experiment results indicate that, with the increasing of mica content in stone powder, 28d and 60d compressive strength of cement mortar decreases obvious, mass loss rate and strength loss rate with 50 freeze-thaw cycles increase a little. Microstructure of cement mortar with higher content of mica is not compactly by SEM, the internal defects of cement hardened pastes could be increased because of the flake mica which surface is smooth, and it will cause the spread of micro crack.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Danying Gao ◽  
Tao Zhang ◽  
Yihong Wang ◽  
Yiming Kong ◽  
Dawei Li ◽  
...  

The disposal of waste tire rubber has gained more attention from the viewpoint of green, environmental protection, and sustainability. Numerous attempts have been stated on the properties of crumb rubber concrete (CRC) and observed that there is a large reduction of compressive strength and elastic modulus of CRC with the increase of the rubber substitution rate. Based on the CRC with the crumb rubber volume content of 5%, the steel fibers and nanosilica were added to CRC to make steel fiber-and-nanosilica-reinforced crumb rubber concrete (SFNS-CRC) in this paper. The effects of the steel fiber volume content and nanosilica content on the compressive properties of SFNS-CRC were studied, including compressive strength, elastic modulus, peak strain, compression toughness, and failure pattern. The test results indicated that the modulus of elasticity and compressive strength of SFNS-CRC have the increasing tendency with the addition of steel fibers and nanosilica. Moreover, the peak strains have a significant increase with the increase of the steel fiber content and nanosilica replacement ratio. The compressive stress-strain curves of SFNS-CRC gradually plump with the increase of the steel fibers and nanosilica. Finally, the prediction formulas for the compressive strength, elastic modulus, and peak strain of SFNS-CRC were set up. A simple predicted model of the stress-strain curve for SFNS-CRC was proposed, which considers the effect of steel fibers and nanosilica.


2015 ◽  
Vol 1120-1121 ◽  
pp. 1485-1490
Author(s):  
Jian Li Yuan ◽  
Yun Yang ◽  
Sheng Nan Peng

Aiming at the environmental property and damage mechanism of ancient adobe buildings, the material components, compressive strength and freezing-thawing resisting performance of ancient adobe bricks were tested and analyzed. Based on test data, the power function relation between nondestructive rebound value and compressive strength of adobe bricks was established, and the nonlinear correlation curve between mass loss rate and freezing–thawing cycles of adobe bricks was also determined. The study shows that the compressive strength of ancient adobe brick is greater than that of adobe in traditional rammed earth wall, and ancient adobe brick is inferior to fired brick at the waterproofing quality and freezing resisting performance, it needs to adopt surface waterproofing measures for ancient adobe buildings to improve the resisting capacity to environmental erosion.


2011 ◽  
Vol 368-373 ◽  
pp. 2425-2429 ◽  
Author(s):  
Shi Zhu Lin ◽  
Hui Min Li ◽  
Hong Yan Zhang

The existing concrete structures, especially hydraulic dams, in the cold areas of northern China have suffered from freeze-thaw damages to varying degrees in the small part or the vast areas of the projects. This paper will work out the performance deterioration index with the relative dynamic elastic modulus and the mass loss rate of the concrete. The test shows that there is a linear relationship between the concrete's relative dynamic elastic modulus and the increasing number of freezing-thawing cycles; the mass loss rate, however, varies with the water-cement ratio and displays different tendency of changes in the initial phase of the cycle, but the mass is decreased in the later phase. Besides, combining with the application, the writer will simulate the concrete's freezing-thawing process under actual operation conditions with the standard test data, in order to offer the presumption model of freezing-thawing durability and predict the residual freezing-thawing life of the concrete, thus providing theoretical basis for the structure's maintenance, repair, and dismantlement.


2010 ◽  
Vol 163-167 ◽  
pp. 1667-1672
Author(s):  
Jian Zhang ◽  
Bo Diao ◽  
Yan Dong Li ◽  
Xiao Ning Zheng

: Performance of high strength concrete and ordinary concrete under alternating action of mixed erosion and freeze-thaw cycling were compared. The erosion solution was mixed by weight of 3% sodium chloride and 5% sodium sulfate. Results showed that, after 200 freeze-thaw cycles, the effect of surface scaling of ordinary concrete was more significant than that of high strength concrete, and the mass loss rate of ordinary concrete was much higher; The relative dynamic modulus of elasticity of high strength concrete slightly increased by 2.99%, while that of ordinary concrete decreased more than 13%. Compressive strength and elastic modulus of high strength and ordinary concrete behaved almost in the same way in the first 50 freeze-thaw cycles, with the increase of freeze-thaw cycles in the following test, the compressive strength and elastic modulus of ordinary concrete showed larger reductions than these of high strength concrete. As the freeze-thaw cycles increased, the corresponding strain to the peak stress of high strength concrete decreased, but it increased for ordinary concrete.


Sign in / Sign up

Export Citation Format

Share Document