scholarly journals Effect of Tooth Types on the Accuracy of Dental 3D Scanners: An In Vitro Study

Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1744 ◽  
Author(s):  
Keunbada Son ◽  
Kyu-bok Lee

The purpose of this study was to evaluate the accuracy of dental three-dimensional (3D) scanners according to the types of teeth. A computer-aided design (CAD) reference model (CRM) was obtained by scanning the reference typodont model using a high-precision industrial scanner (Solutionix C500, MEDIT). In addition, a CAD test model (CTM) was obtained using seven types of dental 3D scanners (desktop scanners (E1 and DOF Freedom HD) and intraoral scanners (CS3500, CS3600, Trios2, Trios3, and i500)). The 3D inspection software (Geomagic control X, 3DSystems) was used to segment the CRM according to the types of teeth and to superimpose the CTM based on the segmented teeth. The 3D accuracy of the scanner was then analyzed according to the types of teeth. One-way analysis of variance (ANOVA) was used to compare the differences according to the types of teeth in statistical analysis, and the Tukey HSD test was used for post hoc testing (α = 0.05). Both desktop and intraoral scanners showed significant differences in accuracy according to the types of teeth (P < 0.001), and the accuracy of intraoral scanners tended to get worse from anterior to posterior. Therefore, when scanning a complete arch using an intraoral scanner, the clinician should consider the tendency for the accuracy to decrease from anterior to posterior.

2019 ◽  
Vol 10 (1) ◽  
pp. 74 ◽  
Author(s):  
Byung-hyun Kang ◽  
Keunbada Son ◽  
Kyu-bok Lee

This study aims to evaluate the accuracy of five different intraoral scanners and two different laboratory scanners for a complete arch. A computer-aided design (CAD) reference model (CRM) was obtained using industrial scanners. A CAD test model (CTM) was obtained using five types of intraoral scanners (CS3500, CS3600, Trios2, Trios3, and i500) and two types of laboratory scanners (3shape E1 and DOF) (N = 20). In addition, the CRM and CTM were superimposed using a 3D inspection software (Geomagic control X; 3D Systems) and 3D analysis was performed. In the 3D analysis, the accuracy was measured by the type of tooth, the anterior and posterior region, and the overall region. As for the statistical analysis of the accuracy, the differences were confirmed using the Kruskal–Wallis H test (α = 0.05). Also, the differences between the groups were analyzed by post-hoc tests including Mann–Whitney U-test and Bonferroni correction method (α = 0.0017). There was a significant difference in the scanning accuracy of the complete arch according to the type of scanner (P < 0.001). The i500 Group showed the lowest accuracy (143 ± 69.6 µm), while the 3Shape E1 Group was the most accurate (14.3 ± 0.3 µm). Also, the accuracy was lower in the posterior region than in the anterior region in all types of scanners (P < 0.001). Scanning accuracy of the complete arch differed depending on the type of scanner. While three types of intraoral scanners (CS3500, CS3600, Trios3) can be recommended for scanning of a complete arch, the two remaining types of intraoral scanners (Trios2 and i500) cannot be recommended.


2020 ◽  
Vol 14 (02) ◽  
pp. 189-193 ◽  
Author(s):  
Passent Aly ◽  
Cherif Mohsen

Abstract Objectives The integration of computer-aided design and manufacturing technologies in diagnosis, treatment planning, and fabrication of prosthetic restoration is changing the way in which prosthodontic treatment is provided to patients. The aim of this study was to compare the accuracy of three-dimensional (3D) printed casts produced from the intraoral scanner using stereolithographic (SLA) 3D printing technique, their digital replicas, and conventional stone casts. Materials and Methods In this in vitro study, a typodont of maxillary and mandibular arches with full dentate ivory teeth was used as a reference cast. The typodont was digitized using Trios 3Shape intraoral scanner to create digital casts. The digital files were converted into 3D printed physical casts using a prototyping machine that utilizes the stereolithography printing technology and photocurable polymer as printing material. Linear measurements (mesiodistal and occlusocervical) and interarch measurements (intercanine and intermolar) were made for digital and prototyped models and were compared with the original stone casts. The reference teeth were canines, first premolars and second premolars in the maxillary and mandibular arches on the right and left sides. The measurements on printed and conventional casts were done by digital caliper while on digital casts; Geomagic Qualify software was used. Statistical Analysis One-way analysis of variance (ANOVA) was used to compare measurements among groups. Results Digital casts showed significantly higher error than the other two groups in all linear and interarch measurements. The mean errors of the digital cast in occlusocervical (OC) and mesiodistal (MD) measurements (0.016 and 0.006, respectively) were higher compared with those in the other two groups (OC, 0.004 and 0.007 and MD, 0.003 and 0.005 [p < 0.0001 and p = 0.02, respectively]). Also, digital mean error in intermolar width (IMW) and intercanine width (ICW) (0.142 and 0.113, respectively) were greater than the other two groups (IMW, 0.019 and 0.008 and ICW, 0.021 and 0.011 [p < 0.0001]). However, the errors were within the acceptable clinical range. Conclusion The 3D printed casts may be considered as a substitute for stone casts with clinically acceptable accuracy that can be used in diagnosis, treatment planning, and fabrication of prosthetic restorations.


2021 ◽  
Vol 11 (20) ◽  
pp. 9399
Author(s):  
Dong-Geun Lee ◽  
Keunbada Son ◽  
Kyu-Bok Lee

The purpose of this study was to evaluate the accuracy of intraoral scanners in 10 abutments (five premolars and five molars) obtained in a dental clinic and to analyze the impacts of the volume and area of abutments on scanning accuracy. Abutment casts were scanned five times with a 3D contact scanner (DS10; Renishaw plc). The five scan files were lined up and then merged, and one high-resolution computer-aided design reference model (CRM) was obtained. To obtain a computer-aided design test model (CTM), three types of intraoral scanners (CS3600 (Carestream Dental), i500 (Medit), and EZIS PO (DDS)) and one type of laboratory scanner (E1; 3Shape) were employed. Using 3D analysis software (Geomagic control X; 3D Systems), the accuracy of the scanners was evaluated, including optimal overlap by optimal alignment. The conformity of the overlapped data was calculated by the root mean square (RMS) value, using the 3D compare function for evaluation. As for statistical analysis, testing was conducted, using one-way and two-way ANOVA and the Tukey HSD test (α = 0.05) for the comparison of the groups. To analyze the correlations of the volume and area of the abutments with accuracy, Pearson’s correlation analysis was conducted (α = 0.00625). Both premolar and molar abutments showed a lower RMS value on the laboratory scanner than on the intraoral scanners, and the RMS value was lower in premolars than in molars (p < 0.001). In the intraoral scanner group, CS3600 showed the best accuracy (p < 0.001). There were significant positive correlations for the volume and area of the abutments with accuracy (p < 0.001). The type, volume, and area of the clinically applicable abutments may affect the accuracy of intraoral scanners; however, the scanners used in the present study showed a clinically acceptable accuracy range, regardless of the type of abutment.


Author(s):  
Keunbada Son ◽  
Wan-Sun Lee ◽  
Kyu-Bok Lee

This in vitro study aimed to evaluate the 3D analysis for complete arch, half arch, and tooth preparation region by using four analysis software programs. The CAD reference model (CRM; N = 1 per region) and CAD test models (CTMs; N = 20 per software) of complete arch, half arch, and tooth preparation were obtained by using scanners. For both CRM and CTMs, mesh data other than the same area were deleted. For 3D analysis, four analysis software programs (Geomagic control X, GOM Inspect, Cloudcompare, and Materialise 3-matic) were used in the alignment of CRM and CTMs as well as in the 3D comparison. Root mean square (RMS) was regarded as the result of the 3D comparison. One-way analysis of variance and Tukey honestly significant difference tests were performed for statistical comparison of four analysis software programs (α = 0.05). In half-arch and tooth preparation region, the four analysis software programs showed a significant difference in RMS values (p < 0.001), but in complete-arch region, no significant difference was found among the four software programs (p = 0.139). As the area of the virtual cast for 3D analysis becomes smaller, variable results are obtained depending on the software program used, and the difference in results among software programs are not considered in the 3D analysis for complete-arch region.


2020 ◽  
Vol 26 (7) ◽  
pp. 1227-1235 ◽  
Author(s):  
Taehun Kim ◽  
Guk Bae Kim ◽  
Hyun Kyung Song ◽  
Yoon Soo Kyung ◽  
Choung-Soo Kim ◽  
...  

Purpose This study aims to systemically evaluate morphological printing errors between computer-aided design (CAD) and reference models fabricated using two different three-dimensional printing (3DP) technologies with hard and soft materials. Design/methodology/approach The reference models were designed to ensure simpler and more accurate measurements than those obtained from actual kidney simulators. Three reference models, i.e. cube, dumbbell and simplified kidney, were manufactured using photopolymer jetting (PolyJet) with soft and hard materials and multi-jet printing (MJP) with hard materials. Each reference model was repeatably measured five times using digital calipers for each length. These values were compared with those obtained using CAD. Findings The results demonstrate that the cube models with the hard material of MJP and hard and soft materials of PolyJet were smaller (p = 0.022, 0.015 and 0.057, respectively). The dumbbell model with the hard material of MJP was smaller (p = 0.029) and that with the soft material of PolyJet was larger (p = 0.020). However, the dumbbell with the hard material of PolyJet generated low errors (p = 0.065). Finally, the simplified kidney models with the hard material of MJP and soft materials of PolyJet were smaller (p = 0.093 and 0.021) and that with the hard material of PolyJet was opposite to the former models (p = 0.043). Originality/value This study, to the best of authors’ knowledge, is the first to determine the accuracy between CAD and reference models fabricated using two different 3DP technologies with multi-materials. Thus, it serves references for surgical applications as simulators and guides that require accuracy.


2020 ◽  
pp. 232020682097597
Author(s):  
Ece Irem Oguz ◽  
Mehmet Ali Kılıçarslan ◽  
Merve Erdog˘ Özgür ◽  
Kaan Orhan ◽  
Sohaib Shujaat

Aim: To compare the marginal adaptation of crowns fabricated by using three different resin-ceramic computer-aided design/computer-aided manufacturing (CAD/CAM) materials. Materials and Methods: Crowns fabricated from three different resin-ceramic CAD/CAM blocks, applied on a typodont premolar (#14), were tested with regard to marginal adaptation, in this in vitro study. The typodont maxillary first premolar was prepared to serve as the master die and digitized with an intraoral scanner. The same virtual crown design was used to fabricate all specimens. Forty-eight crowns were fabricated from the same virtual crown design using three different CAD/CAM resin-ceramic blocks as follows ( n = 16): Lava Ultimate (LU), GC Cerasmart (GC), Vita Enamic (VE). Master die and crowns were scanned with a laboratory scanner and three-dimensional data were transferred into three-matic software. The software calculated the mean of the marginal discrepancy (MD) for each crown in negative and positive values, representing under and over estimation of the crown margin, respectively. A marginal discrepancy index (MDI) was obtained for each group using negative and positive MDs. All data were statistically analyzed using one-way analysis of variance and Tukey’s honest significance test ( α = 0.05). Results: The analysis of variance showed no statistical differences between materials regarding the negative and positive MDs ( P > .05). The MDI for LU was lower than GC and VE ( P < .05). Conclusion: The marginal adaptation of different resin-ceramic materials was different with regard to MDI values. Nevertheless, the MD values of all groups were within the clinically acceptable range.


Sign in / Sign up

Export Citation Format

Share Document