scholarly journals Application of Pulsed Electric Field in Antifouling Treatment of Sodium Gluconate Mother Liquor by Electrodialysis

Materials ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2501 ◽  
Author(s):  
Qi Gao ◽  
Zichao Li ◽  
Chunxiao Lei ◽  
Rongqiang Fu ◽  
Wei Wang ◽  
...  

Contamination of ion exchange membranes is one of the major problems in electrodialysis. Among the solutions that have been proposed and tested to alleviate membrane fouling during electrodialysis so far, applying a pulsed electric field (PEF) at a fixed application time (Ton) followed by a pause time (Toff) has been proved to be effective. In this study, the PEF was applied to desalinate sodium gluconate mother liquor by ED. The experimental properties of conventional ED and pulsed ED and their effects on membrane fouling were compared. The results show that compared with conventional ED, pulsed ED can alleviate concentration polarization and enhance the performance of ED. Similarly, in the process of continuous batch treatment of mother liquor under the PEF condition, large organic molecules can be effectively prevented from depositing on the membrane surface. Therefore, an anion exchange membrane (AEM) under the condition of PEF is contaminated mainly by organic molecules with a relatively smaller size. Both the surface and interior of AEM membrane were affected by organic pollutants under conventional electric field (CEF) conditions.

Desalination ◽  
2006 ◽  
Vol 200 (1-3) ◽  
pp. 208-209 ◽  
Author(s):  
Benjamin Ruiz ◽  
Philippe Sistat ◽  
Patrice Huguet ◽  
Gérald Pourcelly ◽  
Monica Araya-Farias ◽  
...  

Membranes ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 968
Author(s):  
Zhun Ma ◽  
Lu Zhang ◽  
Ying Liu ◽  
Xiaosheng Ji ◽  
Yuting Xu ◽  
...  

The fouling mechanism of the anion exchange membrane (AEM) induced by natural organic matter (NOM) in the absence and presence of calcium ions was systematically investigated via the extended Derjaguin–Landau–Verwey–Overbeek (xDLVO) approach. Sodium alginate (SA), humic acid (HA), and bovine serum albumin (BSA) were utilized as model NOM fractions. The results indicated that the presence of calcium ions tremendously aggravated the NOM fouling on the anion exchange membrane because of Ca-NOM complex formation. Furthermore, analysis of the interaction energy between the membrane surface and foulants via xDLVO revealed that short-range acid–base (AB) interaction energy played a significant role in the compositions of interaction energy during the electrodialysis (ED) process. The influence of NOM fractions in the presence of calcium ions on membrane fouling followed the order: SA > BSA > HA. This study demonstrated that the interaction energy was a dominating indicator for evaluating the tendency of anion exchange membranes fouling by natural organic matter.


Author(s):  
Sina Jahangiri Mamouri ◽  
Volodymyr V. Tarabara ◽  
André Bénard

Cross flow filtration (CFF) is a common membrane separation process with applications in food, biochemical and petroleum industries. In particular, membranes can be used for liquid-liquid separation processes such as needed in oil-water separation. A major challenge in cross flow filtration is membrane fouling. It can decrease significantly the permeate flux and a membrane’s efficiency. Membrane fouling can be mitigated by inducing shear on the membrane’s surface and this can be enhanced by inducing a swirl in the flow. In addition, a possible approach to improve membrane efficiency consists of repelling droplets/particles from the porous surface toward the centerline using a repulsive electric force. For this purpose, the surface of the membrane can be exposed to electric potential and droplets/particles are also induced to have the same electric charge. In this work, numerical simulations of charged non-deformable droplets moving within an axially rotating charged tubular membrane are performed. The results show that by increasing the electric potential on the membrane surface, the repelling force increases which obviously improves the grade efficiency of the membrane. However, the electric field gradients found in the flow field require large potentials on the membrane surface to observe a noticeable effect. Hence, a smaller solid cylinder is located in the centerline of the flow channel with zero potential. This solid cylinder enhances the electric field gradient in the domain which results in higher repelling forces and larger grade efficiency of the membrane at small potentials. The addition of a small cylinder in the flow field also improves the grade efficiency increases due to the higher shear stress near the membrane surface.


Author(s):  
Fengxia Liu ◽  
Wei Wei ◽  
Guan Wang ◽  
Xiaofei Xu ◽  
Zhijun Liu ◽  
...  

Membrane fouling and concentration polarization can be greatly mitigated by using the helical membrane modules to enhance the mass transport process. In this study, experiments and computational fluid dynamics were used to investigate the transport phenomena in a helical membrane filter with several helical membrane modules. A model is constructed with a square filter which has three helical membrane modules embedded as not only turbulence promoters but also filtering elements. Direct numerical simulations based on the Navier-Stokes equations are performed over a range of characteristic parameters of membrane and aeration flux. The distributions of local parameters such as velocity, shear stress and turbulent kinetic energy on the membrane surface were obtained by numerical simulations with different helical angle and aeration flux. These parameters are directly related to mass transport enhancement. Results show that both wall shear stress and turbulent kinetic energy obtained from helical membrane modules are larger than those from flat membrane modules, and they increase with an increase of the helical angle. The average shear stress on the membrane surface increases from 0.097 Pa to 0.217 Pa as the helical angle changes from 0° to 360°. In addition, the flow field was analyzed by means of noncontact measuring and visualization device-Particle Image Velocimetry (PIV), and the vorticity as well as the turbulent kinetic energy were obtained from the velocity distribution. The measured data are in agreement with the numerical results. From the research, we can see that the helical membrane modules can enhance the transfer efficiently compared to the flat membrane modules, which means the concentration polarization and membrane fouling can be alleviated efficaciously, it can be concluded that the helical membrane modules can play an important role in government actions membrane separation engineering and its application prospect in industry is very broad.


Author(s):  
Tejas Tripathi ◽  
Mohanad Kamaz ◽  
S. Ranil Wickramasinghe ◽  
Arijit Sengupta

Electric responsive membranes have been prepared by controlled surface grafting of poly (ionic liquid) (PIL) on the commercially available regenerated cellulose ultrafiltration membrane. The incorporation of imidazolium ring on membrane surface was evidenced by FTIR (Fourier transformed infra-red) and EDX (energy-dispersive X-ray) spectroscopy. The PIL grafting resultedin a rougher surface, reduction in pore size, and enhancement in hydrophilicity. The interaction of the electric field between the charged PIL brush and the oscillating external electric field leads to micromixing, and hence it is proposed to break the concentration polarization. This micromixing improves the antifouling properties of the responsive membranes. The local perturbation was found to decrease the water flux, while it enhanced protein rejection. At a higher frequency (1kHz) of the applied electric field, the localized heating predominates compared to micromixing. In the case of a lower frequency of the applied electric field, more perturbation can lead to less permeability, whereas it will have a better effect in breaking the concentration polarization. However, during localized heating at a higher frequency, though perturbation is less, a heating induced reduction in permeability was observed. The electric field response of the membrane was found to be reversible in nature, and hence has no memory effect.


Membranes ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 187
Author(s):  
Patrick May ◽  
Soraya Laghmari ◽  
Mathias Ulbricht

In this study, the bottleneck challenge of membrane fouling is addressed via establishing a scalable concentration polarization (CP) enabled and surface-selective hydrogel coating using zwitterionic cross-linkable macromolecules as building blocks. First, a novel methacrylate-based copolymer with sulfobetain and methacrylate side groups was prepared in a simple three-step synthesis. Polymer gelation initiated by a redox initiator system (ammonium persulfate and tetramethylethylenediamine) for radical cross-linking was studied in bulk in order to identify minimum (“critical”) concentrations to obtain a hydrogel. In situ reactive coating of a polyamide nanofiltration membrane was achieved via filtration of a mixture of the reactive compounds, utilizing CP to meet critical gelation conditions solely within the boundary layer. Because the feasibility was studied and demonstrated in dead-end filtration mode, the variable extent of CP was estimated in the frame of the film model, with an iterative calculation using experimental data as input. This allowed to discuss the influence of parameters such as solution composition or filtration rate on the actual polymer concentration and resulting hydrogel formation at the membrane surface. The zwitterionic hydrogel-coated membranes exhibited lower surface charge and higher flux during protein filtration, both compared to pristine membranes. Salt rejection was found to remain unchanged. Results further reveal that the hydrogel coating thickness and consequently the reduction in membrane permeance due to the coating can be tuned by variation of filtration time and polymer feed concentration, illustrating the novel modification method’s promising potential for scale-up to real applications.


2013 ◽  
Vol 133 (2) ◽  
pp. 32-37 ◽  
Author(s):  
Akira Nakagawa ◽  
Hitoshi Hatayama ◽  
Koichi Takaki ◽  
Shoji Koide ◽  
Yukio Kawamura

Sign in / Sign up

Export Citation Format

Share Document