scholarly journals Concentration Polarization Enabled Reactive Coating of Nanofiltration Membranes with Zwitterionic Hydrogel

Membranes ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 187
Author(s):  
Patrick May ◽  
Soraya Laghmari ◽  
Mathias Ulbricht

In this study, the bottleneck challenge of membrane fouling is addressed via establishing a scalable concentration polarization (CP) enabled and surface-selective hydrogel coating using zwitterionic cross-linkable macromolecules as building blocks. First, a novel methacrylate-based copolymer with sulfobetain and methacrylate side groups was prepared in a simple three-step synthesis. Polymer gelation initiated by a redox initiator system (ammonium persulfate and tetramethylethylenediamine) for radical cross-linking was studied in bulk in order to identify minimum (“critical”) concentrations to obtain a hydrogel. In situ reactive coating of a polyamide nanofiltration membrane was achieved via filtration of a mixture of the reactive compounds, utilizing CP to meet critical gelation conditions solely within the boundary layer. Because the feasibility was studied and demonstrated in dead-end filtration mode, the variable extent of CP was estimated in the frame of the film model, with an iterative calculation using experimental data as input. This allowed to discuss the influence of parameters such as solution composition or filtration rate on the actual polymer concentration and resulting hydrogel formation at the membrane surface. The zwitterionic hydrogel-coated membranes exhibited lower surface charge and higher flux during protein filtration, both compared to pristine membranes. Salt rejection was found to remain unchanged. Results further reveal that the hydrogel coating thickness and consequently the reduction in membrane permeance due to the coating can be tuned by variation of filtration time and polymer feed concentration, illustrating the novel modification method’s promising potential for scale-up to real applications.

Author(s):  
Chyouhwu Brian Huang ◽  
Hung-Shyong Chen

Ultrafiltration (UF) is an important industrial operation and is found in the food industry, separation of oil-water emulsions, treatment effluents from the pulp and paper industry, and environmental protection systems. Despite being widely used in these areas, UF systems exhibit a limiting flux behavior caused by concentration polarization on the membrane surface. Concentration polarization can be severe in macromolecular solutions due to low diffusivity on membrane separation and both mechanical and chemical methods have been used to reduce this phenomenon. This study introduces a new mechanical method that improves the performance of membrane separation and decreases concentration polarization. It involves pulsing the feed flow discontinuously and based on our results, feed flow velocity and solution bypass/membrane filtration time ratio are two vital factors when it comes to improving permeate flux. The proposed method is expected to find wide application, particularly in the processing of macromolecular solution.


Materials ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2501 ◽  
Author(s):  
Qi Gao ◽  
Zichao Li ◽  
Chunxiao Lei ◽  
Rongqiang Fu ◽  
Wei Wang ◽  
...  

Contamination of ion exchange membranes is one of the major problems in electrodialysis. Among the solutions that have been proposed and tested to alleviate membrane fouling during electrodialysis so far, applying a pulsed electric field (PEF) at a fixed application time (Ton) followed by a pause time (Toff) has been proved to be effective. In this study, the PEF was applied to desalinate sodium gluconate mother liquor by ED. The experimental properties of conventional ED and pulsed ED and their effects on membrane fouling were compared. The results show that compared with conventional ED, pulsed ED can alleviate concentration polarization and enhance the performance of ED. Similarly, in the process of continuous batch treatment of mother liquor under the PEF condition, large organic molecules can be effectively prevented from depositing on the membrane surface. Therefore, an anion exchange membrane (AEM) under the condition of PEF is contaminated mainly by organic molecules with a relatively smaller size. Both the surface and interior of AEM membrane were affected by organic pollutants under conventional electric field (CEF) conditions.


2021 ◽  
Author(s):  
Kyu Min Lee ◽  
Farhad Ein-Mozaffari

Ultrafiltration is one of the most promising membrane technologies for liquid purification due to its high economic efficiency in the industries. However, it has been faced with a critical problem, called fouling. The contaminants in feed solution tend to accumulate on the membrane surface, hindering permeate solution to pass through the porous spaces. Among the various solutions, application of ultrasound has been considered as the most popular method since it does not suffer a disadvantage of downtime and the filtration process does not need to be stopped for the removal of foulants. In this study, control of ceramic membrane fouling by an on-line intermittent ultrasound system was being investigated. The experiment focused on obtaining optimal operating ultrasonic condition. Frequency (20, 28, and 40 kHz), power intensity (1.44, 2.88, and 5.76W/cm2 ), and time interval of intermittent ultrasound (1, 1.5, and 2 minutes) were the parameters of interest. The effect of feed concentration was also analyzed at optimal ultrasonic condition. The quality and flow rate of the permeate streams were monitored for the evaluation of the process performance. The optimal condition of intermittent ultrasound was found at the frequency of 28 kHz and the power intensity of 2.88 W/cm2 ; and then, the application of intermittent ultrasound with short time interval successfully reduced the operating cost of ultrafiltration process while maintaining acceptable quality and flow rate of permeate solution. There was increase in efficiency of intermittent ultrasound at lower feed concentration.


Author(s):  
Fengxia Liu ◽  
Wei Wei ◽  
Guan Wang ◽  
Xiaofei Xu ◽  
Zhijun Liu ◽  
...  

Membrane fouling and concentration polarization can be greatly mitigated by using the helical membrane modules to enhance the mass transport process. In this study, experiments and computational fluid dynamics were used to investigate the transport phenomena in a helical membrane filter with several helical membrane modules. A model is constructed with a square filter which has three helical membrane modules embedded as not only turbulence promoters but also filtering elements. Direct numerical simulations based on the Navier-Stokes equations are performed over a range of characteristic parameters of membrane and aeration flux. The distributions of local parameters such as velocity, shear stress and turbulent kinetic energy on the membrane surface were obtained by numerical simulations with different helical angle and aeration flux. These parameters are directly related to mass transport enhancement. Results show that both wall shear stress and turbulent kinetic energy obtained from helical membrane modules are larger than those from flat membrane modules, and they increase with an increase of the helical angle. The average shear stress on the membrane surface increases from 0.097 Pa to 0.217 Pa as the helical angle changes from 0° to 360°. In addition, the flow field was analyzed by means of noncontact measuring and visualization device-Particle Image Velocimetry (PIV), and the vorticity as well as the turbulent kinetic energy were obtained from the velocity distribution. The measured data are in agreement with the numerical results. From the research, we can see that the helical membrane modules can enhance the transfer efficiently compared to the flat membrane modules, which means the concentration polarization and membrane fouling can be alleviated efficaciously, it can be concluded that the helical membrane modules can play an important role in government actions membrane separation engineering and its application prospect in industry is very broad.


2018 ◽  
Vol 80 (3-2) ◽  
Author(s):  
Danu Ariono ◽  
Anita Kusuma Wardani ◽  
Putu Teta Prihartini Aryanti ◽  
Ahmad Nurul Hakim ◽  
I Gede Wenten

Wastewater from electroplating industries is usually contaminated with high concentration of hazardous materials, such as nickel, copper, and chromium. Therefore, the electroplating wastewater is one of the environmental problems that require a novel solution to reduce risks for human and environment. Ultrafiltration is a promising technology to overcome this problem due to its ability to reject all suspended solids. However, membrane fouling still becomes a major obstacle in ultrafiltration processes. Fouling reduces the permeate flux and increases membrane operational costs due to membrane cleaning. In this work, fouling mechanism that occurred in polyacrylonitrile based ultrafiltration for electroplating wastewater treatment was investigated. The effects of trans-membrane pressure (TMP) and cross flow velocity on fouling mechanism were also studied. The results showed that in the first 20 minutes, intermediate blocking was occurred on the membrane surface, while cake formation was happened for the rest of filtration time. These results were applied for all TMP and cross flow velocity.


2021 ◽  
Author(s):  
Kyu Min Lee ◽  
Farhad Ein-Mozaffari

Ultrafiltration is one of the most promising membrane technologies for liquid purification due to its high economic efficiency in the industries. However, it has been faced with a critical problem, called fouling. The contaminants in feed solution tend to accumulate on the membrane surface, hindering permeate solution to pass through the porous spaces. Among the various solutions, application of ultrasound has been considered as the most popular method since it does not suffer a disadvantage of downtime and the filtration process does not need to be stopped for the removal of foulants. In this study, control of ceramic membrane fouling by an on-line intermittent ultrasound system was being investigated. The experiment focused on obtaining optimal operating ultrasonic condition. Frequency (20, 28, and 40 kHz), power intensity (1.44, 2.88, and 5.76W/cm2 ), and time interval of intermittent ultrasound (1, 1.5, and 2 minutes) were the parameters of interest. The effect of feed concentration was also analyzed at optimal ultrasonic condition. The quality and flow rate of the permeate streams were monitored for the evaluation of the process performance. The optimal condition of intermittent ultrasound was found at the frequency of 28 kHz and the power intensity of 2.88 W/cm2 ; and then, the application of intermittent ultrasound with short time interval successfully reduced the operating cost of ultrafiltration process while maintaining acceptable quality and flow rate of permeate solution. There was increase in efficiency of intermittent ultrasound at lower feed concentration.


2004 ◽  
Vol 4 (5-6) ◽  
pp. 215-222 ◽  
Author(s):  
A.R. Costa ◽  
M.N. de Pinho

Membrane fouling by natural organic matter (NOM), namely by humic substances (HS), is a major problem in water treatment for drinking water production using membrane processes. Membrane fouling is dependent on membrane morphology like pore size and on water characteristics namely NOM nature. This work addresses the evaluation of the efficiency of ultrafiltration (UF) and Coagulation/Flocculation/UF performance in terms of permeation fluxes and HS removal, of the water from Tagus River (Valada). The operation of coagulation with chitosan was evaluated as a pretreatment for minimization of membrane fouling. UF experiments were carried out in flat cells of 13.2×10−4 m2 of membrane surface area and at transmembrane pressures from 1 to 4 bar. Five cellulose acetate membranes were laboratory made to cover a wide range of molecular weight cut-off (MWCO): 2,300, 11,000, 28,000, 60,000 and 75,000 Da. Severe fouling is observed for the membranes with the highest cut-off. In the permeation experiments of raw water, coagulation prior to membrane filtration led to a significant improvement of the permeation performance of the membranes with the highest MWCO due to the particles and colloidal matter removal.


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1397
Author(s):  
Bishwash Shrestha ◽  
Mohammadamin Ezazi ◽  
Gibum Kwon

Membrane-based separation technologies are the cornerstone of remediating unconventional water sources, including brackish and industrial or municipal wastewater, as they are relatively energy-efficient and versatile. However, membrane fouling by dissolved and suspended substances in the feed stream remains a primary challenge that currently prevents these membranes from being used in real practices. Thus, we directly address this challenge by applying a superhydrophilic and oleophobic coating to a commercial membrane surface which can be utilized to separate and desalinate an oil and saline water mixture, in addition to photocatalytically degrading the organic substances. We fabricated the photocatalytic membrane by coating a commercial membrane with an ultraviolet (UV) light-curable adhesive. Then, we sprayed it with a mixture of photocatalytic nitrogen-doped titania (N-TiO2) and perfluoro silane-grafted silica (F-SiO2) nanoparticles. The membrane was placed under a UV light, which resulted in a chemically heterogeneous surface with intercalating high and low surface energy regions (i.e., N-TiO2 and F-SiO2, respectively) that were securely bound to the commercial membrane surface. We demonstrated that the coated membrane could be utilized for continuous separation and desalination of an oil–saline water mixture and for simultaneous photocatalytic degradation of the organic substances adsorbed on the membrane surface upon visible light irradiation.


Membranes ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 380
Author(s):  
Yan Chen ◽  
Huiping Li ◽  
Weihai Pang ◽  
Baiqin Zhou ◽  
Tian Li ◽  
...  

Nanofiltration (NF) is a promising post-treatment technology for providing high-quality drinking water. However, membrane fouling remains a challenge to long-term NF in providing high-quality drinking water. Herein, we found that coupling pre-treatments (sand filtration (SF) and ozone–biological activated carbon (O3-BAC)) and NF is a potent tactic against membrane fouling while achieving high-quality drinking water. The pilot results showed that using SF+O3-BAC pre-treated water as the feed water resulted in a lower but a slowly rising transmembrane pressure (TMP) in NF post-treatment, whereas an opposite observation was found when using SF pre-treated water as the feed water. High-performance size-exclusion chromatography (HPSEC) and three-dimensional excitation–emission matrix (3D-EEM) fluorescence spectroscopy determined that the O3-BAC process changed the characteristic of dissolved organic matter (DOM), probably by removing the DOM of lower apparent molecular weight (LMW) and decreasing the biodegradability of water. Moreover, amino acids and tyrosine-like substances which were significantly related to medium and small molecule organics were found as the key foulants to membrane fouling. In addition, the accumulation of powdered activated carbon in O3-BAC pre-treated water on the membrane surface could be the key reason protecting the NF membrane from fouling.


Sign in / Sign up

Export Citation Format

Share Document