scholarly journals Separation of Water in Diesel Using Filter Media Containing Kapok Fibers

Materials ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2667
Author(s):  
Qiang Song ◽  
Jian Kang ◽  
Min Tang ◽  
Yun Liang

Traditional water-repellent filter media for water separation in diesel fail to meet requirements due to the high content of surfactants in low sulfur diesel and ULSD (ultra low sulfur diesel). To improve the water separation performance of filter media, a novel dual-layer filter medium was prepared by hydrophilic fibers (glass microfibers) and hydrophobic fibers (kapok fibers and bi-component PET fibers). The results showed that the separation efficiency of a filter medium (sample #2) with the upstream layer containing 20 wt% kapok fibers was 89.5%, which was higher than that of filter samples with the upstream layer containing 0 wt%, 40 wt%, 60 wt% and 80 wt% kapok fibers. When the interfacial tension (IFT) of water in diesel was 21 mN/m, 17 mN/m and 13 mN/m, the separation efficiency of filter sample #2 was 99.5%, 89.5% and 30.5%, respectively, which was 23.9%, 57.4% and 17.8% higher than that of the commercial water-repellent filter samples composed of a polybutylene terephthalate (PBT) fiber layer and cellulose fiber layer.

2018 ◽  
Vol 72 (5) ◽  
pp. 253-264
Author(s):  
Dunja Sokolovic ◽  
Milica Hadnadjev-Kostic ◽  
Arpad Kiralj ◽  
Radmila Secerov-Sokolovic

Bed coalescers are compact, easy to install, automate, and maintain with the ability to achieve high separation efficiencies. They have been increasingly applied in the industry even though their design often requires pilot plant experiments. In this paper, a new wetting property of polymer fibers regarding polar mineral oils was established. This property can be important for selection of filter media for liquid-liquid separation in many industrial applications. Medical oil was selected as the new reference liquid that does not wet the investigated polymers. The lipophilic/lyophobic ratio (LLR) reached values ranging from 3.28 to 18.81 and increased with the increase of the mineral oil polarity measured by the oil neutralization number. The LLR values were in an excellent agreement with the results obtained from the separation efficiency of a steady-state bed coalescer. Thus, simple, fast and inexpensive experiments can replace pilot plant or at least laboratory testing aiming at selecting a polymer for oil separation from wastewater.


2021 ◽  
pp. 004051752110569
Author(s):  
Long Feng ◽  
Yimiao Hou ◽  
Qingqing Hao ◽  
Mingxing Chen ◽  
Shuo Wang ◽  
...  

The deterioration of water ecology caused by the discharge of oil spill wastewater, industrial sewage, and municipal sewage has attracted wide attention worldwide. Thus, it is significant to design a simple, environmentally friendly approach to separate oil–water mixtures. In this work, three different fabrics with pH-induced wettability transition were prepared by a dip-coating process for oil and water separation. The dip-coating fabrics had the advantages of oil–water separation, photocatalytic degradation, and recycling. Polyethylene terephthalate/polyamide nonwoven fabric was used as the substrate materials of the fabric. The carboxylic acid-modified TiO2 endowed the fabric with hydrophilicity–hydrophobicity and photocatalytic properties. The Fe3O4 nanoparticles obtained by the coprecipitation method provided magnetism for the fabric, facilitating the recycling of the fabric and improving the hydrophobicity of the fabric. The fabrics coated with dipping solutions were superhydrophobic in a neutral environment and hydrophilic in an alkaline environment. Among the three coated fabrics, the fabric coated with stearic acid/TiO2-Fe3O4 (FST) had the most satisfying oil–water separation performance and durability. Under the neutral condition, the contact angle of the FST was 151° and the separation efficiency was 98%. Under the alkaline condition, the underwater oil contact angle of the FST was 150° and the separation efficiency was 95%. After 15 cycles, the oil–water separation rate of the FST was still higher than 90%. Due to the presence of TiO2, the coated fabric had an exceptional performance in the photodegradation of organic pollutants (69.9%). In addition, the fabrics can be quickly recovered due to magnetism.


2021 ◽  
Vol 8 ◽  
Author(s):  
Min Zhan ◽  
Wanyou Yang ◽  
Fenghui Zhang ◽  
Changhua Luo ◽  
Huaxiao Wu ◽  
...  

To reduce the cost of oil exploitation, it is necessary to promote the development of cyclones for oil-water separation due to the increase of the water content in produced fluids. However, there are some limitations and disadvantages for the conventional separation device including bulky settling tanks and hydrocyclones. In this paper, a new axial inlet separator with two reverse flow outlets and a downstream flow outlet is introduced. In addition, an experimental system was designed and fabricated to investigate the effects of inlet flow rate, oil fraction, and a controlled split ratio on separation performance. The separator maintains high separation efficiency within the experimental range, namely water flow rate (4–7 m3/h), and oil fraction (1%–10%). Furthermore, the results show that a higher water flow rate and oil fraction will affect the separation efficiency. The change of a pressure drop in the separator was analyzed as well. Moreover, the controlled split ratio is a serious operating parameter, and a larger controlled split ratio is conducive to the separation performance.


Gels ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 66
Author(s):  
Zhongjie Zhu ◽  
Lei Jiang ◽  
Jia Liu ◽  
Sirui He ◽  
Wei Shao

A superhydrophobic fluorinated silica functionalized chitosan (F-CS) aerogel is constructed and fabricated by a simple and sustainable method in this study in order to achieve highly efficient gravity-driven oil/water separation performance. The fluorinated silica functionalization invests the pristine hydrophilic chitosan (CS) aerogel with promising superhydrophobicity with a water contact angle of 151.9°. This novel F-CS aerogel possesses three-dimensional structure with high porosity as well as good chemical stability and mechanical compression property. Moreover, it also shows striking self-cleaning performance and great oil adsorption capacity. Most importantly, the as-prepared aerogels exhibits fast and efficient separation of oil/water mixture by the gravity driven process with high separation efficiency. These great performances render the prepared F-CS aerogel a good candidate for oil/water separation in practical industrial application.


2021 ◽  
Author(s):  
Jiexiu Wen ◽  
Qihao Yu ◽  
Chaofan Cui ◽  
Juanjuan Su ◽  
Jian Han

Abstract Oily wastewater has always been an environmental issue that we are concerned about and committed to managing. Although the superwetting membranes have been extensively studied and widely used in oil/water separation, the abundant discarded membranes are still headaches due to their non-degradable nature. In this work, all-around green, as well as superhydrophilic polylactic acid (PLA) nonwoven membrane, is designed by coating cellulose nanospheres (CNCs) with the aid of polydopamine (PDA). Abundant hydroxyl groups and hierarchical rough structure synergistically contribute to the superhydrophilicity and excellent oil/water separation performance of the resultant CNCs/PDA/PLA nonwoven membrane. Interestingly, the oil/water separation efficiency can be maintained above 98% after 100 times of repeated use. With outstanding durability, and easy controllability, the CNCs/PDA/PLA nonwoven membrane may provide effective solutions to simultaneously manage the oily wastewater and secondary pollution of the used membrane itself.


Author(s):  
Mao Feng ◽  
Tian RuiFeng ◽  
Chen BoWen ◽  
He Wei

Corrugated plate dryer is one of the key components of natural circulation steam generator in the pressurized water reactor nuclear power plant. It play a decisive role in the water separation system to making steam become a good quality after steam flow out of a vertical steam generator. With the increase of the reactor power in the future design, it requires that the performance of corrugated plate dryer must be increased in the characteristics of steam load, separating efficiency, volume and resistance to make sure that steam generators still produce qualified steam at higher steam loads and higher cycle magnitudes. In this paper, we have done some experimental studies on the corrugated plate dryer. And we concentrated on airflow parameters on the separation performance and resistance performance of dryer. (1) First of all, we have determined the experimental research program about this study, after this, we finished the design works of the test bench, and then we have completed the construction work based on the design works. (2) Afterwards, the flow and separation mechanism of the wave plate dryer was experimentally studied by means of parameter measurement and analysis combined with observation and recording. The effects of different inlet humidities and inlet velocity on separation efficiency, pressure drop and re-entrainment were studied. The above study shows that: (1) The separation efficiency of corrugated plate dryer is related to inlet humidity and inlet airflow velocity. The separation efficiency of corrugated plate dryer is increase with inlet humidity goes higher, and increased to reach a highest point then goes down when inlet airflow velocity increased. (2) The re-entrainment is related to inlet humidity. When inlet humidity increased, the inlet airflow critical velocity which lead to re-entrain would decrease. (3) The pressure drop of dryer is related to the inlet airflow velocity. When the inlet wind velocity increases, the pressure drop increases.


Author(s):  
Anisha Mule ◽  
Ramin Dabirian ◽  
Srinivas Swaroop Kolla ◽  
Ram Mohan ◽  
Ovadia Shoham

Abstract A novel non-fibrous filter media is evaluated for in-line oil-water separation. Outside-in-crossflow configuration incorporating the filter media is utilized in order to test the filter. All experiments are conducted with a hydrophilic-olephobic filter for water-continuous flow with low oil concentrations. The collected experimental data include permeate flow rate and purity as well as pressure drop. Values of permeate flow rate and pressure drop are averaged over the duration of the experiments, which is about 5 minutes, constituting the “initial average” of the permeate flow rate and the corresponding pressure drop. Totally twelve experimental runs are conducted for mixture velocities of 0.038 m/s, 0.055 m/s and 0.066 m/s, and oil concentrations of 0.6%, 0.83%, 1.1%, 7.9% and 9.1%. Permeate samples are analyzed for oil content, demonstrating a high separation efficiency of 98 ± 2%. The permeate flux across the filter cartridge ranges between 0.0739 (L/h)/cm2 to 0.216 (L/h)/cm2 owing to the low pressure drop across to filter. Oil concentration in to permeate water samples shows consistently increasing trend with an increase in inlet oil content, while maintaining high separation efficiency for all runs. The pressure drop across the membrane under flowing conditions ranges from 0.35 psid to 0.6 psid for flow rates between 0.1 L/min and 0.29 L/min, respectively. Also the data confirm that the filter membrane breakthrough pressure is 0.35 psid.


1999 ◽  
Vol 39 (9) ◽  
pp. 161-168 ◽  
Author(s):  
Virginia R. Stovin ◽  
Adrian J. Saul ◽  
Andrew Drinkwater ◽  
Ian Clifforde

The use of computational fluid dynamics-based techniques for predicting the gross solids and finely suspended solids separation performance of structures within urban drainage systems is becoming well established. This paper compares the result of simulated flow patterns and gross solids separation predictions with field measurements made in a full size storage chamber. The gross solids retention efficiency was measured for six different storage chambers in the field and simulations of these chambers were undertaken using the Fluent computational fluid dynamics software. Differences between the observed and simulated flow patterns are discussed. The simulated flow fields were used to estimate chamber efficiency using particle tracking. Efficiency results are presented as efficiency cusps, with efficiency plotted as a function of settling velocity. The cusp represents a range of efficiency values, and approaches to the estimation of an overall efficiency value from these cusps are briefly discussed. Estimates of total efficiency based on the observed settling velocity distribution differed from the measured values by an average of ±17%. However, estimates of steady flow efficiency were consistently higher than the observed values. The simulated efficiencies agreed with the field observations in identifying the most efficient configuration.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Nur’ Adilah Abdul Nasir ◽  
Ameen Gabr Ahmed Alshaghdari ◽  
Mohd Usman Mohd Junaidi ◽  
Nur Awanis Hashim ◽  
Mohamad Fairus Rabuni ◽  
...  

Abstract Efficient purification technology is crucial to fully utilize hydrogen (H2) as the next generation fuel source. Polyimide (PI) membranes have been intensively applied for H2 purification but its current separation performance of neat PI membranes is insufficient to fulfill industrial demand. This study employs blending and crosslinking modification simultaneously to enhance the separation efficiency of a membrane. Polyethersulfone (PES) and Co-PI (P84) blend asymmetric membranes have been prepared via dry–wet phase inversion with three different ratios. Pure H2 and carbon dioxide (CO2) gas permeation are conducted on the polymer blends to find the best formulation for membrane composition for effective H2 purification. Next, the membrane with the best blending ratio is chemically modified using 1,3-diaminopropane (PDA) with variable reaction time. Physical and chemical characterization of all membranes was evaluated using field emission scanning electron microscope (FESEM), X-ray diffraction (XRD), and Fourier transform infrared (FTIR). Upon 15 min modification, the polymer membrane achieved an improvement on H2/CO2 selectivity by 88.9%. Moreover, similar membrane has demonstrated the best performance as it has surpassed Robeson’s upper bound curve for H2/CO2 gas pair performance. Therefore, this finding is significant towards the development of H2-selective membranes with improved performance.


Sign in / Sign up

Export Citation Format

Share Document