kapok fibers
Recently Published Documents


TOTAL DOCUMENTS

42
(FIVE YEARS 19)

H-INDEX

10
(FIVE YEARS 2)

2021 ◽  
Vol 902 ◽  
pp. 127-132
Author(s):  
Marvin U. Herrera ◽  
Ronniel D. Manalo ◽  
Monet C. Maguyon-Detras ◽  
Mary Donnabelle L. Balela

Kapok fibers were used as a filtering medium in a column-type filtration set-up to separate diesel from water molecules in dynamic conditions. The amount of diesel flowing out the filtration system with respect to time was monitored. The times wherein the diesel first came out the filtering system (breakthrough time) were shorter at higher influent concentration and faster flow rate. Meanwhile, the total sorbed diesel molecules in the filtering system were increasing with the influent concentration while invariant with flow rate. The shorter breakthrough time was associated with the higher amount of diesel molecules that could be sorbed at a shorter time and the rate at which the overall processes of sorption-desorption-resorption proceeded. On the other hand, the sorption capacity of the system was viewed to be affected by the amount of moving diesel molecules that would interact with the kapok fibers and/or surface-sorbed diesel molecules but not by the contact time.


2021 ◽  
pp. 004051752110320
Author(s):  
Liyao Cao ◽  
Yanfang Xu ◽  
Kaifang Xie ◽  
Fumei Wang ◽  
Guangbiao Xu

Kapok fiber is a natural hollow fiber that has superior biocompatibility and biodegradability and is naturally antibacterial. Because of its unique properties, it has great potential in the application of postoperative repair dressings. The wettability and micro-equilibrium of kapok fibers play a critical role in dressing applications. In this study, the critical adhesion volume and adhesion energy of essence liquid to alkali-treated kapok fiber (AKF) were quantitatively calculated to explore the wettability and micro-equilibrium through the equilibrium wetting theory. Meanwhile, the three-phase contact line (TCL) structure was described. The results showed that the critical adhesion volumes of the three types of essence liquid for AKF were 3.45, 3.81, and 4.12 μL, respectively. Moreover, the critical volumes and low error rates derived from the equilibrium wetting theory were 3.41 μL and 1.16%, 3.99 μL and 4.51%, and 4.60 μL and 10.43%, respectively. Therefore, the critical volume of adhesion could be well calculated by the theoretical model. The average adhesive energies of essence liquid to the AKF were 0.38, 0.45, and 0.56 J, respectively, caused by the difference in liquids properties. The TCL showed a mechanical lock and bonding points at both ends because of the curvature difference and higher surface energy. These results are proposed to inspire the design of a liquid carrier of kapok fibers based on the fiber network structure.


Author(s):  
Marwanto Marwanto ◽  
Muhammad Iqbal Maulana ◽  
Fauzi Febrianto ◽  
Nyoman J. Wistara ◽  
Siti Nikmatin ◽  
...  

2021 ◽  
Vol 891 ◽  
pp. 77-82
Author(s):  
Sharyjel R. Cayabyab ◽  
Josefina R. Celorico ◽  
Cyron L. Custodio ◽  
Blessie A. Basilia

Utilization of natural biopolymers has shown potential in generating innovations for tissue engineering applications. This study aims to fabricate scaffolds from cellulose acetate derived from kapok fiber. Cellulose is extracted from raw kapok fibers by alkali treatment and delignification then synthesized into cellulose acetate. Kapok cellulose acetate (KCA) is dissolved in dimethyl sulfoxide to fabricate the scaffold. Materials were characterized using Attenuated Total Reflectance – Fourier Transform Infrared (ATR-FTIR) spectrometer, X-ray diffractometer (XRD) and Differential Scanning Calorimeter (DSC). FTIR analysis has shown that cellulose was extracted from kapok and cellulose acetate was successfully synthesized. XRD analysis also confirmed the presence of cellulose acetate. Results have also shown that synthesized KCA seems to have higher crystallinity than commercially available cellulose acetate (CCA). The degree of substitution (DS) of KCA was found to be 2.85 which is close to the DS value of tri-substituted cellulose acetate. DSC analysis has shown lower glass transition temperature of 52.15°C but higher degradation temperature of 300.43°C than the CCA. Moreover, the values for the enthalpy of fusion for two endotherms of KCA (44.0556 J/g and 18.6946 J/g) are higher than the values for CCA by 344% and 261%, respectively; thus, indicating the higher degree of crystallinity for synthesized KCA samples.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1894
Author(s):  
Marwanto Marwanto ◽  
Muhammad Iqbal Maulana ◽  
Fauzi Febrianto ◽  
Nyoman Jaya Wistara ◽  
Siti Nikmatin ◽  
...  

This study aimed to evaluate the effect of ammonium persulfate’s (APS) oxidation time on the characteristics of the cellulose nanocrystals (CNCs) of balsa and kapok fibers after delignification pretreatment with sodium chlorite/acetic acid. This two-step method is important for increasing the zeta potential value and achieving higher thermal stability. The fibers were partially delignified using acidified sodium chlorite for four cycles, followed by APS oxidation at 60 °C for 8, 12, and 16 h. The isolated CNCs with a rod-like structure showed an average diameter in the range of 5.5–12.6 nm and an aspect ratio of 14.7–28.2. Increasing the reaction time resulted in a gradual reduction in the CNC dimensions. The higher surface charge of the balsa and kapok CNCs was observed at a longer oxidation time. The CNCs prepared from kapok had the highest colloid stability after oxidation for 16 h (−62.27 mV). The CNCs with higher crystallinity had longer oxidation times. Thermogravimetric analysis revealed that the CNCs with a higher thermal stability had longer oxidation times. All of the parameters were influenced by the oxidation time. This study indicates that APS oxidation for 8–16 h can produce CNCs from delignified balsa and kapok with satisfactory zeta potential values and thermal stabilities.


2021 ◽  
Vol 261 ◽  
pp. 124252
Author(s):  
Aravind Parakkulam Ramaswamy ◽  
Arnaud Rigacci

2021 ◽  
Vol 880 ◽  
pp. 133-138
Author(s):  
Jericko C. Alipoyo ◽  
Venniece Etienne B. Magoncia ◽  
Angel Ainaleigh M. Perido ◽  
Mary Donnabelle L. Balela

This paper presents a parametric study on the adsorptive property of NaOH-treated polyacrylonitrile (PAN)-kapok fibers for the removal of Pb (II) and Cr (VI) ions in aqueous solutions. Generally, the NaOH-hydrolyzed PAN-kapok favors the adsorption of Pb (II) compared to Cr (VI). The adsorption capacity was in the range of 41.67-83.33 mg/g as the initial Pb (II) concentration was increased from 50 to 100 ppm. Similarly, the adsorption capacity for Cr (VI) was from 8.24 to 15.81 mg/g as the initial concentration was raised from 50 to 150 ppm. The adsorption capacity was also enhanced by increasing the adsorbent dosage. Finally, uptake of Pb (II) at the early stages of the adsorption was fast, with adsorption capacity reaching ~120 mg/g.


2021 ◽  
Vol 880 ◽  
pp. 127-132
Author(s):  
Wayne Christian P. Datiles ◽  
Sellina M. Sy ◽  
Mary Donnabelle L. Balela

Extensive processes and costly precursors for the fabrication of existing sorbents for oil spills urges to look for more renewable sorbent sources. In this work, hollow, tubular, cellulosic fibers (kapok, Ceibapentandra) were successfully converted to carbon sponges by pyrolysis at increasing temperature and time. Fourier Transform Infrared (FTIR) spectroscopy confirmed the complete carbonization of the kapok fibers at 800 °C. Scanning Electron Microscope (SEM) images revealed that the carbonized kapok fibers maintained their original tubular structures, suggesting high surface area. Water contact angle measurement showed improved hydrophobicity, with a maximum value of about 135°. The carbonized fibers were able to hold selected organic and oil solvents ranging from 16-20 times the weight of the fibers. The fiber pyrolyzed at 400 °C for 0.5 h showed the highest sorption capacity at 45.56 g/g for palm oil, almost matching that of raw kapok.


Sign in / Sign up

Export Citation Format

Share Document