scholarly journals Impurity Doping in Mg(OH)2 for n-Type and p-Type Conductivity Control

Materials ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 2972
Author(s):  
Masaya Ichimura

Magnesium hydroxide (Mg(OH)2) has a wide bandgap of about 5.7 eV and is usually considered an insulator. In this study, the energy levels of impurities introduced into Mg(OH)2 are predicted by first-principles calculations. A supercell of brucite Mg(OH)2 consisting of 135 atoms is used for the calculations, and an impurity atom is introduced either at the substitutional site replacing Mg or the interlayer site. The characteristics of impurity levels are predicted from density-of-states analysis for the charge-neutral cell. According to the results, possible shallow donors are trivalent cations at the substitutional site (e.g., Al and Fe) and cation atoms at the interlayer site (Cu, Ag, Na, and K). On the other hand, an interlayer F atom can be a shallow acceptor. Thus, valence control by impurity doping can turn Mg(OH)2 into a wide-gap semiconductor useful for electronics applications.

1998 ◽  
Vol 537 ◽  
Author(s):  
Fernando A. Reboredo ◽  
Sokrates T. Pantelides

AbstractIt is well known that hydrogen plays a key role in p-type doping of GaN. It is believed that H passivates substitutional Mg during growth by forming a Mgs-N-Hi complex; in subsequent annealing, H is removed, resulting in p-type doping. Several open questions have remained, however, such as experimental evidence for other complexes involving Mg and H and difficulties in accounting for the relatively high-temperature anneal needed to remove H. We present first principles calculations in terms of which we show that the doping process is in fact significantly more complex. In particular, interstitial Mg plays a major role in limiting p-type doping. Overall, several substitutional/interstitial complexes form and can bind H, with vibrational frequencies that account for hitherto unidentified observed lines. We predict that these defects, which limit doping efficiency, can be eliminated by annealing in an atmosphere of H and N prior to the final anneal that removes H.


2016 ◽  
Vol 30 (20) ◽  
pp. 1650257
Author(s):  
Meng Zhao ◽  
Wenjun Wang ◽  
Jun Wang ◽  
Junwei Yang ◽  
Weijie Hu ◽  
...  

Various Be:O-codoped AlN crystals have been investigated via first-principles calculations to evaluate the role of the different combinations in effectively and efficiently inducing p-type carriers. It is found that the O atom is favored to bond with two Be atoms. The formed Be2:O complexes decrease the acceptor ionization energy to 0.11 eV, which is 0.16 eV lower than that of an isolated Be in AlN, implying that the hole concentration could probably be increased by 2–3 orders of magnitude. The electronic structure of Be2:O-codoped AlN shows that the lower ionization energy can be attributed to the interaction between Be and O. The Be–O complexes, despite failing to induce p-type carriers for the mutual compensation of Be and O, introduce new occupied states on the valence-band maximum (VBM) and hence the energy needed for the transition of electrons to the acceptor level is reduced. Thus, the Be2:O codoping method is expected to be an effective and efficient approach to realizing p-type AlN.


2020 ◽  
Vol 7 (12) ◽  
pp. 200723
Author(s):  
Hai Duong Pham ◽  
Wu-Pei Su ◽  
Thi Dieu Hien Nguyen ◽  
Ngoc Thanh Thuy Tran ◽  
Ming-Fa Lin

The essential properties of monolayer silicene greatly enriched by boron substitutions are thoroughly explored through first-principles calculations. Delicate analyses are conducted on the highly non-uniform Moire superlattices, atom-dominated band structures, charge density distributions and atom- and orbital-decomposed van Hove singularities. The hybridized 2 p z –3 p z and [2s, 2 p x , 2 p y ]–[3s, 3 p x , 3 p y ] bondings, with orthogonal relations, are obtained from the developed theoretical framework. The red-shifted Fermi level and the modified Dirac cones/ π bands/ σ bands are clearly identified under various concentrations and configurations of boron-guest atoms. Our results demonstrate that the charge transfer leads to the non-uniform chemical environment that creates diverse electronic properties.


Author(s):  
Takahiro Kawamura ◽  
Toru Akiyama

Abstract Ga2O3 is a wide bandgap semiconductor and an understanding of its bandgap tunability is required to broaden the potential range of Ga2O3 applications. In this study, the different bandgaps of α-Ga2O3 were calculated by performing first-principles calculations using the pseudopotential self-interaction correction method. The relationships between these bandgaps and the material's hydrostatic, uniaxial, and equibiaxial lattice strains were investigated. The direct and indirect bandgaps of strain-free α-Ga2O3 were 4.89 eV and 4.68 eV, respectively. These bandgap values changed linearly and negatively as a function of the hydrostatic strain. Under the uniaxial and equibiaxial strain conditions, the maximum bandgap appeared under application of a small compressive strain, and the bandgaps decreased symmetrically with increasing compressive and tensile strain around the maximum value.


2020 ◽  
Vol 22 (3) ◽  
pp. 1784-1784
Author(s):  
Weiwei Wang ◽  
Yang Zhong ◽  
Dahuai Zheng ◽  
Hongde Liu ◽  
Yongfa Kong ◽  
...  

Correction for ‘p-Type conductivity mechanism and defect structure of nitrogen-doped LiNbO3 from first-principles calculations’ by Weiwei Wang et al., Phys. Chem. Chem. Phys., 2020, 22, 20–27.


2020 ◽  
Vol 22 (1) ◽  
pp. 20-27 ◽  
Author(s):  
Weiwei Wang ◽  
Yang Zhong ◽  
Dahuai Zheng ◽  
Hongde Liu ◽  
Yongfa Kong ◽  
...  

The charge-state transition level and geometry structure of non-metallic N-doped LiNbO3 are calculated by DFT, which reveal the p-type conductivity mechanism of LiNbO3:N.


2015 ◽  
Vol 17 (26) ◽  
pp. 16705-16708 ◽  
Author(s):  
Wenzhe Niu ◽  
Hongbin Xu ◽  
Yanmin Guo ◽  
Yaguang Li ◽  
Zhizhen Ye ◽  
...  

The S dopants in S–N co-doped ZnO contribute to easier doping and p-type conductivity, as concluded by experiment and calculations.


Nanoscale ◽  
2019 ◽  
Vol 11 (39) ◽  
pp. 18116-18123 ◽  
Author(s):  
David Kipkemoi Sang ◽  
Teng Ding ◽  
Meng Nan Wu ◽  
Yu Li ◽  
Junqin Li ◽  
...  

Side and top views of monolayer 2D-β-Tellurene with difference charge densities (DCD).


2015 ◽  
Vol 17 (7) ◽  
pp. 5485-5489 ◽  
Author(s):  
M. N. Amini ◽  
R. Saniz ◽  
D. Lamoen ◽  
B. Partoens

With the help of first-principles calculations, we investigate the VZn–NO–H acceptor complex in ZnO. We find that H plays an important role, because it lowers the formation energy of the complex with respect to VZn–NO, a complex known to exhibit p-type behavior. However, this additional H atom also occupies the hole level of VZn–NO making the VZn–NO–H complex a deep acceptor.


Sign in / Sign up

Export Citation Format

Share Document