Microstructure of High Strength Cement Paste Systems

1984 ◽  
Vol 42 ◽  
Author(s):  
M. Regourd

AbstractHigh strength cement pastes include hot pressed, autoclaved, impregnated low water/cement ratio, macrodefect free, ultrafine particles arrangement systems. The densification of the microstrucure is mainly related to a low porosity and to the formation of poorly crystalline hydrates. In composite systems like mortars and concretes, the interfacial bond between the cement paste and aggregates is moreover less porous and more finely crystallized than the normal “auréole de transition”.

2019 ◽  
Vol 9 (1) ◽  
pp. 19-24 ◽  
Author(s):  
Suman Kumar Adhikary ◽  
Zymantas Rudzionis ◽  
Marijus Zubrus

Abstract This paper deals with the behaviour of cement paste upon the addition of crushed polystyrene foam. Crushed polystyrene foam waste with a fill density of 13.97 kg/m3 and hydrated lime were used to prepare the foam. Three different types of samples S-1, S-2, and S-3 were prepared to observe the behaviour of cement pastes after the addition of different doses of foam in constant water/cement ratio. The volumetric ratio of EPS and cement paste were 1: 1.294; 1: 0.863; and 1: 0.647. In each type of sample, 0.28 water/cement ratio is maintained. Slump test was carried out in the fresh state and it has been found slump value was decreasing by increasing foam content in concrete sample. On the 7th and 28th day of curing process, the compressive strength test was carried out. Compressive strength and density of concrete samples also decreasing by addition of higher foam content. In addition, water absorption test and microscopic analysis tests were carried out on the 28th day of curing process. It has been found from the study that samples thermal conductivity is working proportionally.


Author(s):  
Nicolae Angelescu ◽  
Darius Stanciu ◽  
José Barroso de Aguiar ◽  
Hakim S. Abdelgader ◽  
Vasile Bratu

Abstract The article presents a comparative analysis on the hydration of cement paste without superplasticizer and water/cement ratio of 0.35 and a cement paste with the same water/cement ratio but has in its composition 2% superplasticizer additive Glenium Sky 526. For characterizing the hydration process of cement paste, both mixtures were subjected to X-ray diffraction and thermogravimetry analysis, at 3, 7, and 28 days passed since the initiation of hydration process.


2014 ◽  
Vol 875-877 ◽  
pp. 177-182 ◽  
Author(s):  
Xiang Li ◽  
Hua Quan Yang ◽  
Ming Xia Li

The hydration degree of fly ash and the calcium hydroxide (CH) content were measured. Combined with the equilibrium calculation of cement hydration, a new method for assessment of the hydration degree of cement in the fly ash-cement (FC) pastes based on the CH content was developed. The results reveal that as the fly ash content increase, the hydration degree of fly ash and the CH content decrease gradually; at the same time, the hydration degree of cement increase. The hydration degree of cement in the FC pastes containing a high content of fly ash (more than 35%) at 360 days is as high as 80%, even some of which hydrates nearly completely. The effect of water-cement ratio to the hydration degree of cement in the FC pastes is far less distinct than that of the content of fly ash.


Author(s):  
Vanessa Fernandes Cesari ◽  
Fernando Pelisser ◽  
Philippe Jean Paul Gleize ◽  
Milton Domingos Michel

abstract: Ultra-high performance concretes with steel microfibers have been studied in depth with the aim of producing more efficient and durable structures. The performance of these materials depends on the characteristics of the interface between microfibers and cementitious matrix. This research investigates the micro-nanomechanical properties of the interfacial transition zone between the steel microfibers and the matrix of ultra-high performance cementitious composite. The effect of the water/cement ratio and distance from the microfiber were analyzed. The results confirm the formation of high-density calcium-silicate-hydrate (HD C-S-H) matrix at higher concentrations than low-density calcium-silicate-hydrate (LD C-S-H) for w/c ratios of 0.2 and 0.3. The properties in cementitious matrix interface with steel microfibers were very similar to that measured for the cement paste, and no significant difference was observed regarding the distance to the microfibers in relation to the elastic modulus, hardness and chemical composition. Thus, the authors can conclude that the formation of a less resistant region does not occur at the interfacial transition zone cement paste/microfibers.


1984 ◽  
Vol 42 ◽  
Author(s):  
N. B. Eden ◽  
J. E. Bailey

AbstractA model has been developed for the flexural strength of Portland cement pastes, based upon observed fracture behaviour of both normal and high strength pastes. Fibrillar or foil-like elements pull apart at a yield stress which is characteristic of the number of elements and interfacial shear strength. The former can be maximised by using a low water/cement ratio and the latter by inclusion of water-soluble polymer, followed by suitable drying. It is proposed that this is the mechanism by which high strength may be attained in Portland cement.


Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3883
Author(s):  
Seong Ho Han ◽  
Yubin Jun ◽  
Tae Yong Shin ◽  
Jae Hong Kim

Curing by CO2 is a way to utilize CO2 to reduce greenhouse gas emissions. Placing early-age cement paste in a CO2 chamber or pressure vessel accelerates its strength development. Cement carbonation is attributed to the quickened strength development, and CO2 uptake can be quantitatively evaluated by measuring CO2 gas pressure loss in the pressure vessel. A decrease in CO2 gas pressure is observed with all cement pastes and mortar samples regardless of the mix proportion and the casting method; one method involves compacting a low water-to-cement ratio mix, and the other method comprises a normal mix consolidated in a mold. The efficiency of the CO2 curing is superior when a 20% concentration of CO2 gas is supplied at a relative humidity of 75%. CO2 uptake in specimens with the same CO2 curing condition is different for each specimen size. As the specimen scale is larger, the depth of carbonation is smaller. Incorporating colloidal silica enhances the carbonation as well as the hydration of cement, which results in contributing to the increase in the 28-day strength.


2015 ◽  
Vol 730 ◽  
pp. 11-14 ◽  
Author(s):  
Hai Long Zhang ◽  
Chang Chun Pei

By ANSYS finite element analysis we study the impact-span moment and deflection of high strength recycled concrete beam in state of initial cracking and yield with different water-cement ratio and recycled coarse aggregate replacement rate. The results showed that: 1With the increase of water-cement ratio and recycled coarse aggregate replacement rate, the deflection is on the rise. 2With the increase of recycled coarse aggregate replacement rate, the yield moment has a slight upward trend. And with the increase of water-cement ratio and recycled coarse aggregate replacement rate, the span deflection at the state of yield has a growing trend.


2017 ◽  
Vol 8 (2) ◽  
pp. 65
Author(s):  
Abhishek Singh ◽  
Shobha Ram ◽  
Alok Verma

This paper shows how polycarboxylate based superplasticizer affects the initial setting time of cement paste. Three superplasticizers are used in this study with different properties and aiming to determine the delay in initial setting time due to superplasticizer. Initial setting time is calculated as per IS: 4031-PART 5-1988 with different SP dosages (0.5%, 0.75%, 1.0% and 1.5% of weight of cement). Superplasticizer is an admixture which reduces the water-cement ratio or increase the workability at the same water content. This paper deals with the evaluation of initial setting time due to superplasticizers.


2016 ◽  
Vol 2016 ◽  
pp. 1-5 ◽  
Author(s):  
Yury Barabanshchikov ◽  
Ilya Gutskalov

The research object of the paper is cement paste with the particulate reinforcement of basalt fiber. Regardless of fibers’ length at the same fiber cement mix workability and cement consumption equality compressive solidity of the specimens is reduced with increasing fiber content. This is due to the necessity to increase the water-cement ratio to obtain a given workability. The flexural stability of the specimens with increasing fiber content increments in the same conditions. There is an optimum value of the fibers’ dosage. That is why stability has a maximum when crooking. The basaltic fiber particulate reinforcement usage can abruptly increase the cement paste level limiting extensibility, which is extremely important in terms of crack resistance.


Sign in / Sign up

Export Citation Format

Share Document