scholarly journals Analytical Model for Springback Prediction of CuZn20 Foil Considering Size Effects: Weakening versus Strengthening

Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4929
Author(s):  
Xin Guan ◽  
Zhenwu Ma ◽  
Chunju Wang ◽  
Haidong He ◽  
Yuanjing Zhang ◽  
...  

The prediction of springback angle for ultra-thin metallic sheets becomes extremely difficult with the existence of size effects. In this study, size effects on the springback behavior of CuZn20 foils are investigated by experiments and analytical methods. The experimental results reveal that the springback angle first decreases gradually and then increases markedly with the decrease of foil thickness, which cannot be analyzed by current theoretical models. Then, an analytical model based on the Taylor-based nonlocal theory of plasticity is developed, in which the drastic increases of both the proportion of surface grains and the strain gradient are taken into account. Moreover, the influence of strain gradient is modified by the grain-boundary blocking factor. The calculation results show that the springback angle of foils is determined by the intrinsic competition between the decrement angle caused by surface grains and the increment angle caused by the strain gradient. Besides, the relative error of predicted springback angle by the model is less than 15%, which means that the developed model is very useful for improving the quality of micro sheet parts with high accuracy of springback prediction.

2011 ◽  
Vol 403-408 ◽  
pp. 685-690
Author(s):  
He Zong Li ◽  
Xiang Huai Dong ◽  
Su Xia Huang ◽  
Alexander Diehl ◽  
Hinnerk Hagenah

In microbending experiments of metal foils an increase of non-dimensional bending moment with decreasing foil thickness has been observed, which indicates the obvious presence of size effects. It is attributed to plastic strain gradient. So a constitutive model taking into account plastic strain gradient together with conventional plastic strain hardening is proposed to analyze the non-dimensional bending moment in microbending process. It is confirmed that the predictions by using the proposed hardening model agree well with the experimental data, while those determined by using conventional elastoplastic model cannot capture such size effects. A semi-empirical expression is reasonable to determine the material intrinsic length as a function of shear modulus, initial yield strength, length of Burger’s vector, grain size, and macro geometrical characteristic scale of the specimen.


2019 ◽  
pp. 71-74
Author(s):  
N. I. Unru ◽  
E. I. Ashcherbagin

The notion of a quality criterion for non-tunable band-stop filters is introduced, and on the basis of it a comparison of filters with different designs is performed. The quality criterion takes into account the electrical characteristics of the filter and its dimensions, including the volume, the central frequency of the notch band, the level of total losses in the passbands, the width of the notch band by the level of total losses, the width of the notch band by attenuation level. Thus, it allows you to compare the quality of design and manufacture of passive notch filters of various types. The necessary analytical expression is presented, and for a number of variants of filter execution, the corresponding calculation results are given. The stated materials allow us to estimate and optimize the system of interrelated parameters of filters of an arbitrary physical structure.


Author(s):  
James C.  Root ◽  
Elizabeth Ryan ◽  
Tim A. Ahles

As the population of cancer survivors has grown into the millions, there is increasing emphasis on understanding how late effects of treatment impact survivors’ ability return to work/school, ability to function and live independently, and overall quality of life. Cognitive changes are one of the most feared problems among cancer survivors. This chapter describes the growing literature examining cognitive changes associated with non-central nervous system cancer and cancer treatment. Typical elements of cancer treatment are discussed, followed by a description of clinical presentation, self-reported and objectively assessed cognitive findings, and results of structural and functional neuroimaging research. Genetic and other risk factors for cognitive decline following treatment are identified and discussed, together with biomarkers and animal models of treatment-related effects. This is followed by a discussion of behavioral and pharmacologic treatments. Finally, challenges and recommendations for future research are provided to help guide subsequent research and theoretical models.


Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 87
Author(s):  
Giovanni Tocci Monaco ◽  
Nicholas Fantuzzi ◽  
Francesco Fabbrocino ◽  
Raimondo Luciano

An analytical method is presented in this work for the linear vibrations and buckling of nano-plates in a hygro-thermal environment. Nonlinear von Kármán terms are included in the plate kinematics in order to consider the instability phenomena. Strain gradient nonlocal theory is considered for its simplicity and applicability with respect to other nonlocal formulations which require more parameters in their analysis. Present nano-plates have a coupled magneto-electro-elastic constitutive equation in a hygro-thermal environment. Nano-scale effects on the vibrations and buckling behavior of magneto-electro-elastic plates is presented and hygro-thermal load outcomes are considered as well. In addition, critical temperatures for vibrations and buckling problems are analyzed and given for several nano-plate configurations.


2016 ◽  
Vol 15 ◽  
pp. 1-16 ◽  
Author(s):  
Amin Zaami ◽  
Ali Shokuhfar

In this study, a scale-dependent model is employed to investigate the size effects of copper on the behavior of the crack-tip. This model includes the homogeneous and non-homogeneous strain hardening based on the wavelet interpretation of size effect. Introducing additional micro/nano structural considerations together with decreasing grain size, different size effects can be obtained. As the size dependency is not taken into account in conventional plasticity, an enhanced theory which is related to the strain gradient introduces a length scale will give more realistic representations of state variables near the crack-tip. Accordingly, the contribution of geometrically necessary dislocations (GNDs) activity on strengthening and stress concentration factor is identified in the crack-tip. Finally, the affected zone which is dominated by presence of GNDs is identified


2018 ◽  
Vol 86 (2) ◽  
Author(s):  
Yujun Deng ◽  
Jin Wang ◽  
Peiyun Yi ◽  
Linfa Peng ◽  
Xinmin Lai ◽  
...  

The improvement of the accuracy and efficiency of microforming process of polymers is of great significance to meet the miniaturization of polymeric components. When the nonuniform deformation is reduced to the microscopic scale, however, the mechanics of polymers shows a strong reinforcement behavior. Traditional theoretical models of polymers which have not considered material feature lengths are difficult to describe the size effect in micron scale, and the process simulation models based on the traditional theory could not provide effective and precise guidance for polymer microfabrication techniques. The work reported here proposed strategies to simulate size effect behaviors of glassy polymers in microforming process. First, the strain gradient elastoviscoplastic model was derived to describe the size affected behaviors of glassy polymers. Based on the proposed constitutive model, an eight-node finite element with the consideration of nodes' rotation was developed. Then, the proposed finite element method was verified by comparisons between experiments and simulations for both uniaxial compression and microbending. Finally, based on the FE model, under the consideration of the effect of rotation gradient, the strain distribution, the deformation energy, and the processing load were discussed. These strategies are immediately applicable to other wide-ranging classes of microforming process of glassy polymers, thereby foreshadowing their use in process optimizations of microfabrication of polymer components.


2012 ◽  
Vol 134 (4) ◽  
Author(s):  
Zhengmei Li ◽  
Qiong Zhou ◽  
Jianping Tang ◽  
Jianwen Wang ◽  
Qi An

Taking the water pump bearing with one roller row (WR)-type auto water pump bearing as a research sample, an analytical calculation method is developed to improve the accuracy and efficiency of the current calculations for the bearing loads and life in engineering application. Considering the misalignment due to the deflection of the bearing spindle, the bearing internal loads and deformations under the action of the complicated external space loads are obtained. The bearing fatigue life including the lives of the rollers and the balls is also calculated with considering the non-normal load distribution caused by the spindle deflection and the roller tilt. The bearing load and life calculation results are compared with those calculated by the traditional method in which the deflection of the bearing spindle and the roller tilt are ignored. The effects of the bearing spindle deflection on the load distribution and the life of the auto water pump bearing are analyzed and discussed. The life decrease in the auto water pump bearing is significant due to the deflection of the bearing spindle and it is recommended to give more attention to this deflection for the high quality of the bearing design and calculation.


2008 ◽  
Vol 5 (28) ◽  
pp. 1291-1301 ◽  
Author(s):  
Sam Van Wassenbergh ◽  
Peter Aerts

Most theoretical models of unsteady aquatic movement in organisms assume that including steady-state drag force and added mass approximates the hydrodynamic force exerted on an organism's body. However, animals often perform explosively quick movements where high accelerations are realized in a few milliseconds and are followed closely by rapid decelerations. For such highly unsteady movements, the accuracy of this modelling approach may be limited. This type of movement can be found during pivot feeding in pipefish that abruptly rotate their head and snout towards prey. We used computational fluid dynamics (CFD) to validate a simple analytical model of cranial rotation in pipefish. CFD simulations also allowed us to assess prey displacement by head rotation. CFD showed that the analytical model accurately calculates the forces exerted on the pipefish. Although the initial phase of acceleration changes the flow patterns during the subsequent deceleration phase, the accuracy of the analytical model was not reduced during this deceleration phase. Our analysis also showed that prey are left approximately stationary despite the quickly approaching pipefish snout. This suggests that pivot-feeding fish need little or no suction to compensate for the effects of the flow induced by cranial rotation.


Sign in / Sign up

Export Citation Format

Share Document