scholarly journals A New Method for Modeling the Cyclic Structure of the Surface Microrelief of Titanium Alloy Ti6Al4V After Processing with Femtosecond Pulses

Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4983
Author(s):  
Volodymyr Hutsaylyuk ◽  
Iaroslav Lytvynenko ◽  
Pavlo Maruschak ◽  
Volodymyr Dzyura ◽  
Georg Schnell ◽  
...  

A method of computer modeling of a surface relief is proposed, and its efficiency and high accuracy are proven. The method is based on the mathematical model of surface microrelief, using titanium alloy Ti6Al4V subjected to processing with femtosecond pulses as an example. When modeling the examples of microrelief, changes in the shape of segments-cycles of the studied surface processes, which correspond to separate morphological formations, were taken into account. The proposed algorithms were realized in the form of a computer simulation program, which provides for a more accurate description of the geometry of the microrelief segments. It was proven that the new method significantly increases the efficiency of the analysis procedure and processing of signals that characterize self-organized relief formations.

1996 ◽  
Vol 176 ◽  
pp. 53-60 ◽  
Author(s):  
J.-F. Donati

In this paper, I will review the capabilities of magnetic imaging (also called Zeeman-Doppler imaging) to reconstruct spot distributions of surface fields from sets of rotationnally modulated Zeeman signatures in circularly polarised spectral lines. I will then outline a new method to measure small amplitude magnetic signals (typically 0.1% for cool active stars) with very high accuracy. Finally, I will present and comment new magnetic images reconstructed from data collected in 1993 December at the Anglo-Australian Telescope (AAT).


2012 ◽  
Vol 170-173 ◽  
pp. 2924-2928
Author(s):  
Sheng Biao Chen ◽  
Yun Zhi Tan

In order to measure the water drainage volume in soil mechanical tests accurately, it develop a new method which is based on principles of optics. And from both physical and mathematic aspects, it deduces the mathematic relationship between micro change in displacement and the increment projected on screen. The result shows that total reflection condition is better than refraction condition. What’s more, the screen could show the water volume micro variation clearly, so it can improve the accuracy of measurement.


Author(s):  
Chua Guang Yuan ◽  
A. Pramanik ◽  
A. K. Basak ◽  
C. Prakash ◽  
S. Shankar

Author(s):  
Yan Tian

AbstractIn this paper, we provide further illustrations of prolate interpolation and pseudospectral differentiation based on the barycentric perspectives. The convergence rates of the barycentric prolate interpolation and pseudospectral differentiation are derived. Furthermore, we propose the new preconditioner, which leads to the well-conditioned prolate collocation scheme. Numerical examples are included to show the high accuracy of the new method. We apply this approach to solve the second-order boundary value problem and Helmholtz problem.


2013 ◽  
Vol 652-654 ◽  
pp. 2153-2158
Author(s):  
Wu Ji Jiang ◽  
Jing Wei

Controlling the tooth errors induced by the variation of diameter of grinding wheel is the key problem in the process of ZC1 worm grinding. In this paper, the influence of tooth errors by d1, m and z1 as the grinding wheel diameter changes are analyzed based on the mathematical model of the grinding process. A new mathematical model and truing principle for the grinding wheel of ZC1 worm is presented. The shape grinding wheel truing of ZC1 worm is carried out according to the model. The validity and feasibility of the mathematical model is proved by case studies. The mathematical model presented in this paper provides a new method for reducing the tooth errors of ZC1 worm and it can meet the high-performance and high-precision requirements of ZC1 worm grinding.


2011 ◽  
Vol 487 ◽  
pp. 39-43 ◽  
Author(s):  
L. Tian ◽  
Yu Can Fu ◽  
W.F. Ding ◽  
Jiu Hua Xu ◽  
H.H. Su

Single-grain grinding test plays an important part in studying the high speed grinding mechanism of materials. In this paper, a new method and experiment system for high speed grinding test with single CBN grain are presented. In order to study the high speed grinding mechanism of TC4 alloy, the chips and grooves were obtained under different wheel speed and corresponding maximum undeformed chip thickness. Results showed that the effects of wheel speed and chip thickness on chip formation become obvious. The chips were characterized by crack and segment band feature like the cutting segmented chips of titanium alloy Ti6Al4V.


2012 ◽  
Vol 178-181 ◽  
pp. 1250-1253
Author(s):  
Yu Hua Li ◽  
Kai Huang ◽  
Ying Zhen Gao

When we make design of mixture ratio, we always use normal equation method (NEM), but the solution value of that method may doesn’t meet our demand. When we use the new method that proposed in this paper, we can solve the problem. The new method makes an improvement for NEM. By iterative algorithm, the new method uses the gradation data calculated by NEM as initial target value, canceling the relevant aggregate if the result of proportion is negative, and setting the gradation to the boundary value if the target value goes beyond limits. According to the adjusted object value, using NEM again, the new aggregate proportion can be solved. Then the new gradation of mixture will come into being the next target value. Finally, the accurate result will meet our need. The new improved method has good engineering applicability and high accuracy


Author(s):  
Yun Chen ◽  
Huaizhong Li ◽  
Jun Wang

Titanium and its alloys are difficult to machine due to their high chemical reactivity with tool materials and low thermal conductivity. Chip segmentation caused by the thermoplastic instability is always observed in titanium machining processes, which leads to varied cutting forces and chip thickness, etc. This paper presents an analytical modelling approach for cutting forces in near-orthogonal cutting of titanium alloy Ti6Al4V. The catastrophic shear instability in the primary shear plane is assumed as a semi-static process. An analytical approach is used to evaluate chip thicknesses and forces in the near-orthogonal cutting process. The shear flow stress of the material is modelled by using the Johnson–Cook constitutive material law where the strain hardening, strain rate sensitivity and thermal softening behaviours are coupled. The thermal equations with non-uniform heat partitions along the tool–chip interface are solved by a finite difference method. The model prediction is verified with experimental data, where a good agreement in terms of the average cutting forces and chip thickness is shown. A comparison of the predicted temperatures with published data obtained by using the finite element method is also presented.


2008 ◽  
Vol 38 (6) ◽  
pp. 785-791 ◽  
Author(s):  
L. M. Jiang ◽  
W. Li ◽  
A. Attia ◽  
Z. Y. Cheng ◽  
J. Tang ◽  
...  

2019 ◽  
Vol 109 (05) ◽  
pp. 312-318
Author(s):  
T. Engelberth ◽  
A. Verl

Zahnstange-Ritzel-Antriebe werden vorwiegend in großen Werkzeugmaschinen eingesetzt. Um die hohen Genauigkeitsanforderungen moderner Produktionsanlagen zu erreichen, werden diese Antriebe elektrisch verspannt. Die Verspannung ist konstant. Dieser Beitrag beschreibt eine neuartige Methode, die sogenannte adaptive Verspannung. Ziel ist es, den Energiebedarf und die Belastung des Antriebssystems durch Anpassung der Verspannung während des Betriebs zu reduzieren, ohne die Genauigkeit zu beeinflussen.   Rack-and-pinion-drives are mostly used in large machine tools. To achieve the high accuracy specifications of modern production facilities, these drives are electrically preloaded. The preload is constant. This article describes a new method of so-called adaptive preloading. The aim is to reduce energy demand and wear of the drive system by adjusting the preload during operation without affecting the accuracy.


Sign in / Sign up

Export Citation Format

Share Document