scholarly journals Effects of Multiple-Hole Baffle Arrangements on Flow Fields in a Five-Strand Asymmetric Tundish

Materials ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5129
Author(s):  
Binglong Zhang ◽  
Fuhai Liu ◽  
Rong Zhu ◽  
Jinfeng Zhu

This paper reports on the re-engineering of standard five-strand tundish designs into a five-strand asymmetric tundish, which resulted in a non-uniform rate and bias for each strand. We sought to improve the casting conditions by optimizing the liquid steel flow-field in the tundish. Both a water modelling experiment and a numerical simulation were performed to analyze the flow-field according to various diversion hole diameters and injection angles. The results showed that the average residence time decreased as the diameter of the diversion holes increased. As the injection angle was increased, the average residence time initially decreased and then increased. The liquid steel from the ladle shroud rapidly extended to the #2 and #3 strands in the original tundish, which reduced the likelihood of inclusion collision and coalescence.

2013 ◽  
Vol 291-294 ◽  
pp. 1981-1984
Author(s):  
Zhang Xia Guo ◽  
Yu Tian Pan ◽  
Yong Cun Wang ◽  
Hai Yan Zhang

Gunpowder was released in an instant when the pill fly out of the shell during the firing, and then formed a complicated flow fields about the muzzle when the gas expanded sharply. Using the 2 d axisymmetric Navier-Stokes equation combined with single equation turbulent model to conduct the numerical simulation of the process of gunpowder gass evacuating out of the shell without muzzle regardless of the pill’s movement. The numerical simulation result was identical with the experimental. Then simulated the evacuating process of gunpowder gass of an artillery with muzzle brake. The result showed complicated wave structure of the flow fields with the muzzle brake and analysed the influence of muzzle brake to the gass flow field distribution.


2003 ◽  
Vol 46 (1) ◽  
pp. 173-183 ◽  
Author(s):  
Ken-ichi FUNAZAKI ◽  
Carlos Felipe Ferreira FAVARETTO ◽  
Masaya KAMATA ◽  
Tadashi TANUMA

2013 ◽  
Vol 634-638 ◽  
pp. 3774-3777
Author(s):  
Min Hua Zhang ◽  
Hong Mei Zheng ◽  
Cui Liu ◽  
Yin Hu Qu ◽  
Tao Liang ◽  
...  

the inner flow fields of twelve Hema-type ATY nozzles which have different structure and parameters are simulated by the Fluent software, which is based on the CFD (Computational Fluid Dynamics) theory.Then the simulation results are analyzed,through wich the best designed nozzle is determined.


2016 ◽  
Vol 61 (4) ◽  
pp. 2057-2060
Author(s):  
J. Pieprzyca ◽  
P. Warzecha ◽  
T. Merder ◽  
M. Warzecha

Abstract The article presents experimental results on the impact of tundish flow regulator influencing the liquid steel flow course. The research was conducted based on the hybrid modelling methods understood as a complementary use of Computational Fluid Dynamics (CFD) methods and physical modelling. Dynamic development of numerical simulation techniques and accessibility to highly advanced and specialized software causes the fact that these techniques are commonly used for solving problems related to liquid flows by using analytical methods. Whereas, physical modelling is an important cognitive tool in the field of empirical identification of these phenomena. This allows for peer review and specification of the researched problems. By exploiting these relationships, a comparison of the obtained results was performed in the form of residence time distribution (RTD) curves and visualization of particular types of liquid steel flow distribution zones in the investigated tundish.


2014 ◽  
Vol 14 (1) ◽  
pp. 103-106 ◽  
Author(s):  
L. Sowa

Abstract The mathematical and numerical simulation model of the liquid steel flow in a tundish is presented in this paper. The problem was treated as a complex and solved by the finite element method. The single-strand slab tundish is used to continuous casting slabs. The internal work space of the tundish was modified by the following flow control devices. The first device was a striker pad situated in the pouring tundish zone. The second device was a baffle with three holes and the third device was a baffle without hole. The main purpose of using these devices was to cause a quiet liquid mixing as well as give directional metal flow upwards which facilitated inclusion floatation. The interaction of flow control devices on hydrodynamic conditions was received from numerical simulation. As a result of the computations carried out, the liquid steel flow and steel temperature fields were obtained. The influence of the tundish modification on velocity fields in the liquid phase of steel was estimated, because these have an essential influence on high quality of a continuous steel cast slab.


2011 ◽  
Vol 56 (3) ◽  
pp. 611-618 ◽  
Author(s):  
A. Cwudziński

Numerical Simulation of Behaviour a Non-Metallic Inclusions in an One-Strand Slab Tundish with Steel Flow Controll DevicesAn effective refining of liquid steel can be carried out either in a tundish or in the mould of a CSC machine. Being a flow reactor, the tundish performs the function of a link between the steelmaking ladle and the mould. Owing to this fact, the liquid steel resides in the tundish for a specific time, which enables the tundish to be used for refining purposes. For modification oftundish internal working space, two types of flow control device (FCD), namely a ceramic gas-permeable barrier and a subflux turbulence controller (STC), were proposed. For simulation of movement of gas phase and non-metallic inclusions, a discrete phase model was used. The obtained results unambiguously indicate which of the proposed tundish equipment configurations will be more advantageous for intensifying the process of liquid steel refining from NMIs.


2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
H. R. Noaman ◽  
Hai Bin Tang ◽  
Elsayed Khalil

A numerical study has been performed to characterize the nozzle flow field of secondary injection thrust vector control (SITVC) and to estimate the performance parameters of SITVC. After validating the CFD turbulence models with an experimental data, a numerical simulation has been conducted in order to investigate the influence of changing the injection location, the injection angle, and the primary nozzle divergence half angle on the SITVC nozzle flow field structure and on the SITVC performance parameters. The secondary mass flow rate was kept constant for all cases during the simulation. The results showed that downstream injection near the nozzle exit Mp=2.75 increases the high-pressure zone upstream the injection leading to an increase in the side force; also, the higher divergence half angle 15° slightly increases the side force and it provides a wide range of deflection without shock impingement on the opposite wall becoming more effective for SITVC. The injection angle in the upstream direction 135° increases the side force, and by decreasing the injection angle to downstream direction 45°, the side force decreases. However, the SITVC performance parameters and the flow field structure are more influenced by the injection location and the primary nozzle divergence half angle while being less influenced by the injection angle.


Sign in / Sign up

Export Citation Format

Share Document