scholarly journals Effects of Intrabony Length and Cortical Bone Density on the Primary Stability of Orthodontic Miniscrews

Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5615
Author(s):  
Jie Jin ◽  
Gi-Tae Kim ◽  
Jae-Sung Kwon ◽  
Sung-Hwan Choi

Miniscrews have gained recent popularity as temporary anchorage devices in orthodontic treatments, where failure due to sinus perforations or damage to the neighboring roots have increased. Issues regarding miniscrews in insufficient interradicular space must also be resolved. This study aimed to evaluate the primary stability of miniscrews shorter than 6 mm and their feasibility in artificial bone with densities of 30, 40, and 50 pounds per cubic foot (pcf). The primary stability was evaluated by adjusting the intrabony miniscrew length, based on several physical properties: maximum insertion torque (MIT), maximum removal torque (MRT), removal angular momentum (RAM), horizontal resistance, and micromotion. The MIT and micromotion results demonstrated that the intrabony length of a miniscrew significantly affected its stability in low-density cortical bone, unlike cases with a higher cortical bone density (p < 0.05). The horizontal resistance, MRT, and RAM were affected by the intrabony length, regardless of the bone density (p < 0.05). Thus, the primary stability of miniscrews was affected by both the cortical bone density and intrabony length. The effect of the intrabony length was more significant in low-density cortical bone, where the implantation depth increased as more energy was required to remove the miniscrew. This facilitated higher resistance and a lower risk of falling out.

Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4433 ◽  
Author(s):  
Gi-Tae Kim ◽  
Jie Jin ◽  
Utkarsh Mangal ◽  
Kee-Joon Lee ◽  
Kwang-Mahn Kim ◽  
...  

The increasing demand for orthodontic treatment over recent years has led to a growing need for the retrieval and reuse of titanium-based miniscrews to reduce the cost of treatment, especially in patients with early treatment failure due to insufficient primary stability. This in vitro study aimed to evaluate differences in the primary stability between initially inserted and re-inserted miniscrews within different cortical bone densities. Artificial bone was used to simulate cortical bone of different densities, namely 20, 30, 40, and 50 pound per cubic foot (pcf), where primary stability was evaluated based on maximum insertion torque (MIT), maximum removal torque (MRT), horizontal resistance, and micromotion. Scanning electron microscopy was used to evaluate morphological changes in the retrieved miniscrews. The MIT, MRT, horizontal resistance, and micromotion was better in samples with higher cortical bone density, thereby indicating better primary stability (P < 0.05). Furthermore, a significant reduction of MIT, MRT, and horizontal resistance was observed during re-insertion compared with the initial insertion, especially in the higher density cortical bone groups. However, there was no significant change in micromotion. While higher cortical bone density led to better primary stability, it also caused more abrasion to the miniscrews, thereby decreasing the primary stability during re-insertion.


2014 ◽  
Vol 2 (2) ◽  
pp. 169
Author(s):  
Fabiana Padovan Di Lello ◽  
Flávia Regina Vergamine Salles Sgarbi ◽  
Eloisa Marcantonio Boeck ◽  
Nadia Lunardi ◽  
Rodolfo Jorge Boeck Neto

AIM: The aim of this work was evaluate the insertion and removal torque for orthodontic mini-implants inserted in different inclination. MATERIALS AND METHODS: Ten self-drilling mini-implants from the brand SIN (Sistema de Implantes Nacional, São Paulo/SP, Brazil), and the surgical kit for their insertion were used. Two plaques of synthetic bone of 120 mm x 170 mm x 41,5 mm were used (Sawbones, Pacific Research Laboratories Inc, Vashon, Wash), with 1,5 mm height, simulating the cortical bone (density 40 pcf) and 40 mm simulating the medullary bone (density 15 pcf). In each block, five areas were demarcated for each mark, totalizing ten areas. The ten mini-implants were inserted by the same operator, previously calibrated; five of them at 900 and five at 600, using the manual key kit. After the insertion of all the mini-implants, the final threading and the reading of insertion torque value were carried out with a manual torque wrench digital Lutron TQ-8800 (Lutron Electronic Enterprise Co., Ltd, Taipei, Taiwan) until the trans-mucosal profile achieve the cortical bone. The maximum insertion torque value was registered in N/cm. After all the implants inserted, the measurement of removal torque was started, performed in the same way of insertion, but in the opposite anticlockwise. The results were submitted to the T test (parametric) and to a Mann-Whitney test (non-parametric). RESULTS: The results demonstrated that the insertion torque was lower than the removal one in both insertion degrees, with statistically significance. Despite insertion torque at 90 degrees had been lightly higher than that inserted at 60 degrees, they were not statistically significant. CONCLUSION: In view of the results, it was possible conclude that insertion at 60º angulation does not offer advantages to the primary stability for orthodontic mini-implants.


2019 ◽  
Vol 42 (2) ◽  
pp. 206-210 ◽  
Author(s):  
Andrea E Tsatalis ◽  
Keiichiro Watanabe ◽  
Bobby Mitchell ◽  
Do-Gyoon Kim ◽  
Damian J Lee ◽  
...  

Summary Background/Objectives Primary stability is required for successful use of microscrew. This study investigated correlations among biomechanical, morphological, and clinical values in relationship to root contact and different placement locations. Materials/Methods Thirty-three microscrews were placed between the molars (n = 18) or in the body of the mandible (n = 15) in three pigs. Insertion torque, Periotest, resonance frequency analysis (RFA), and static and dynamic stiffness were measured. Cone beam computed tomography was performed before and after the insertion of microscrews. Interproximal microscrews were divided into root contacted microscrews (n = 9) and non-root contact microscrews (n = 9). Factorial analysis of variance was conducted, with significance set at P &lt; 0.05. Results A significant difference was observed between bodily and root contacted microscrews in Periotest, RFA, static and dynamic stiffness, Tanδ, and bone density (RFA, P = 0.045; all others, P &lt; 0.001). A significant difference was observed between bodily and non-root contact microscrews in Periotest, RFA, and bone density (RFA, P = 0.025; all others, P &lt; 0.001). A significant difference was observed in static (P = 0.01) and dynamic (P = 0.038) stiffness between microscrews with and without contact. Dynamic stiffness (P = 0.02) and Tanδ (P = 0.03) showed significant correlations with Periotest results only in bodily microscrews. Limitations Since a pig bone was used, some differences in the quality and quantity of the bone might be observed between humans. Conclusions/Implications Stiffness values distinguished between microscrews with and without contact. Periotest and RFA results indicated that bodily microscrews were more stable than interproximal microscrews. Periotest and RFA may be useful with large, microscrews and/or in thick cortical bone, but further investigation is required to determine the stability of interproximal microscrews.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 270
Author(s):  
Ji-Hyun Kim ◽  
Young-Jun Lim ◽  
Bongju Kim ◽  
Jungwon Lee

The aim of the present study was to evaluate correlations between bone density and implant primary stability, considering various determinants such as age, gender, and geometry of implants (design, diameter). Bone density of edentulous posterior maxillae was assessed by computed tomography (CT)-derived Hounsfield units, and implant primary stability values were measured with insertion torque and resonance frequency analysis (RFA). A total of 60 implants in 30 partially edentulous patients were evaluated in the posterior maxilla with two different types of dental implants. The bone density evaluated by CT-derived Hounsfield units showed a significant correlation with primary stability parameters. The bone quality was more influenced by gender rather than age, and the type of implant was insignificant when determining primary stability. Such results imply that primary stability parameters can be used for objective assessment of bone quality, allowing surgical modifications especially in sites suspected of poor bone quality.


Bone Reports ◽  
2022 ◽  
pp. 101166
Author(s):  
Amandha L. Bittencourt ◽  
Maria Eugênia F. Canziani ◽  
Larissa D.B.R. Costa ◽  
Carlos E. Rochitte ◽  
Aluizio B. Carvalho

2019 ◽  
Vol 2019 ◽  
pp. 1-4 ◽  
Author(s):  
Antonio Scarano ◽  
Bartolomeo Assenza ◽  
Francesco Inchingolo ◽  
Filiberto Mastrangelo ◽  
Felice Lorusso

Background. The immediate placement of a dental implant could represent an option treatment for the rehabilitation of a postextractive missing tooth socket to replace compromised or untreatable teeth, with the advantage of single-session surgery. In this way, the anatomy of the alveolar bone defect, the preservation of the buccal cortical bone, and the primary stability of the fixture represent the critical factors that consent a precise implant placement. Objective. This case report describes a novel fixture design for postextractive alveolar socket immediate implant. Methods. Two patients (25 and 31 years old) were treated for postextractive dental implant placement to replace both central upper incisor teeth with four implants. The residual bone implant gap was not filled with graft or bone substitute. The restoration was provided following a standard loading protocol by a cement-sealed prosthetic abutment. Results. Clinically, all implants positioned showed an excellent insertion torque. No postoperative complications were reported. At 6 months of healing, the buccal cortical bone and the implant stability were present and well maintained. Conclusion. The evidence of this study allows us to underline the possible advantages of this new fixture design for postextractive implant technique.


Sign in / Sign up

Export Citation Format

Share Document