scholarly journals Interfacial Reactions and Mechanical Properties of Sn–58Bi Solder Joints with Ag Nanoparticles Prepared Using Ultra-Fast Laser Bonding

Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 335
Author(s):  
Gyuwon Jeong ◽  
Dong-Yurl Yu ◽  
Seongju Baek ◽  
Junghwan Bang ◽  
Tae-Ik Lee ◽  
...  

The effects of Ag nanoparticle (Ag NP) addition on interfacial reaction and mechanical properties of Sn–58Bi solder joints using ultra-fast laser soldering were investigated. Laser-assisted low-temperature bonding was used to solder Sn–58Bi based pastes, with different Ag NP contents, onto organic surface preservative-finished Cu pads of printed circuit boards. The solder joints after laser bonding were examined to determine the effects of Ag NPs on interfacial reactions and intermetallic compounds (IMCs) and high-temperature storage tests performed to investigate its effects on the long-term reliabilities of solder joints. Their mechanical properties were also assessed using shear tests. Although the bonding time of the laser process was shorter than that of a conventional reflow process, Cu–Sn IMCs, such as Cu6Sn5 and Cu3Sn, were well formed at the interface of the solder joint. The addition of Ag NPs also improved the mechanical properties of the solder joints by reducing brittle fracture and suppressing IMC growth. However, excessive addition of Ag NPs degraded the mechanical properties due to coarsened Ag3Sn IMCs. Thus, this research predicts that the laser bonding process can be applied to low-temperature bonding to reduce thermal damage and improve the mechanical properties of Sn–58Bi solders, whose microstructure and related mechanical properties can be improved by adding optimal amounts of Ag NPs.

2000 ◽  
Vol 652 ◽  
Author(s):  
Anis Zribi ◽  
Peter Borgesen ◽  
Lubov Zavalij ◽  
Eric J. Cotts

ABSTRACTDiffusion and phase formation were monitored in solder joints consisting of flip chips with Ni(V) under-bump metallizations bumped with Ag3.8Cu1.85Sn94.35 (atomic percentage) solder reflowed on printed circuit boards with Cu/Ni/Au metallizations. A ternary alloy, (CuNi)6Sn5, was observed to form during reflow at solder/Ni interfaces in these Ag3.8Cu1.85Sn94.35/Au/Ni solder joints. After extended thermal aging at 150 oC, a second ternary compound, (CuNi)3Sn4 forms at the Ni/(CuNi)6Sn5 interface. The growth of these alloys depletes the solder of essentially all Cu, changing its mechanical properties and melting temperature.


2011 ◽  
Vol 19 (9) ◽  
pp. 2154-2162 ◽  
Author(s):  
谢宏威 XIE Hong-wei ◽  
张宪民 ZHANG Xian-min ◽  
邝泳聪 KUANG Yong-cong ◽  
欧阳高飞 OUYANG Gao-fei

Circuit World ◽  
2015 ◽  
Vol 41 (2) ◽  
pp. 76-79
Author(s):  
Boleslav Psota ◽  
Alexandr Otáhal ◽  
Ivan Szendiuch

Purpose – The main aim of this paper is to investigate the influence of the cavity coverage on the printed circuit boards (PCB) to the resonant frequency, acceleration and displacement. Design/methodology/approach – Tests were realized on four PCBs with different cavity areas. Frequency range of tests was between 10 and 2,000 Hz with 0.3 g acceleration amplitude. In addition, more simulations were performed to check different setups of the boards. Findings – From the calculated and measured data, it is clear that with the larger cavity area the resonance frequency drops. In case a greater number of components placed in cavities are needed on board, it is appropriate to use multiple smaller cavities than the bigger ones. Originality/value – Results in this paper could be very useful for PCB manufacturers and designers during designing of the new PCBs with cavities for dipped components.


2020 ◽  
Vol 395 ◽  
pp. 122642 ◽  
Author(s):  
Ramdayal Panda ◽  
Prashant Ram Jadhao ◽  
Kamal Kishore Pant ◽  
Satya Narayan Naik ◽  
Thallada Bhaskar

Materials ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2429
Author(s):  
Sebastian Micus ◽  
Michael Haupt ◽  
Götz T. Gresser

Experts attest the smart textiles market will have high growth potential during the next ten years. Laser soldering is considered to be a good contacting method because it is a contactless process. For this reason, it is intended to investigate the contacting process of printed circuit boards (PCB) to isolated conductive textile strips by means of a ytterbium-doped fiber laser (1064 nm). During the investigation, the copper strands in the textile tape were stripped by the laser and soldered to the PCB without any transport of the textile. Therefore, we investigated different sets of parameters by means of a design of experiment (DoE) for different types of solder pastes. Finally, the joinings were electrically analyzed using a contact resistance test, optically with a REM examination, and mechanically using a peeling test.


Sign in / Sign up

Export Citation Format

Share Document