laser bonding
Recently Published Documents


TOTAL DOCUMENTS

105
(FIVE YEARS 11)

H-INDEX

9
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Jiebang Luo ◽  
Hengchang Bu ◽  
Feiyun Wang ◽  
Xiaohong Zhan ◽  
Min Yu ◽  
...  

Abstract This paper presents a method to improve the laser joint strength between carbon fiber reinforced thermoplastic composite (CFRTP) and aluminum alloy. In this method, the aluminum alloy sheet is preset between the polyetheretherketone (PEEK) and carbon cloth, while the CFRTP with preset aluminum alloy sheet is attained by the compression molding method. The CFRTP with preset aluminum alloy sheet is connected to the aluminum alloy by laser heat source, and the maximum load of the joint can reach 4264 N. Microstructure and fracture surface morphology of joint are observed and analyzed. The results indicate that the element diffusion between the preset aluminum alloy sheet and CFRTP shows more significant compared with the interface of aluminum alloy and CFRTP due to the effect of hot pressing. The fracture failure mode of the lap structure between aluminum alloy and CFRTP is mixed fracture with adhesion fracture as the main component. The fracture position of preset aluminum alloy sheet and aluminum alloy lap structure occurs near the weld seam fusion line, while the fracture behavior presents a ductile fracture. The joint bonding force is mainly attributed to the collective effect of two lap structures, during the stretching process, the interface between aluminum alloy and CFRTP first undergoes fracture, then preset aluminum alloy sheet undergoes plastic fracture failure.


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2130
Author(s):  
Francesca Rossi ◽  
Giada Magni ◽  
Roberto Colasanti ◽  
Martina Banchelli ◽  
Maurizio Iacoangeli ◽  
...  

Dura mater repair represents a final and crucial step in neurosurgery: an inadequate dural reconstruction determines dreadful consequences that significantly increase morbidity and mortality rates. Different dural substitutes have been used with suboptimal results. To overcome this issue, in previous studies, we proposed a laser-based approach to the bonding of porcine dura mater, evidencing the feasibility of the laser-assisted procedure. In this work, we present the optimization of this approach in ex vivo experiments performed on porcine dura mater. An 810-nm continuous-wave AlGaAs (Aluminium Gallium Arsenide) diode laser was used for welding Indocyanine Green-loaded patches (ICG patches) to the dura. The ICG-loaded patches were fabricated using chitosan, a resistant, pliable and stable in the physiological environment biopolymer; moreover, their absorption peak was very close to the laser emission wavelength. Histology, thermal imaging and leak pressure tests were used to evaluate the bonding effect. We demonstrated that the application of 3 watts (W), pulsed mode (Ton 30 ms, Toff 3.5 ms) laser light induces optimal welding of the ICG patch to the dura mater, ensuring an average fluid leakage pressure of 216 ± 105 mmHg, falling within the range of physiological parameters. This study demonstrated that the thermal effect is limited and spatially confined and that the laser bonding procedure can be used to close the dura mater. Our results showed the effectiveness of this approach and encourage further experiments in in vivo models.


2021 ◽  
Vol 33 (1) ◽  
pp. 012038
Author(s):  
Junyao Xue ◽  
Mohammad Hossein Razavi Dehkordi ◽  
Ali Abdelahi ◽  
Adel Abdelahi ◽  
Ehsan Rasti ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 335
Author(s):  
Gyuwon Jeong ◽  
Dong-Yurl Yu ◽  
Seongju Baek ◽  
Junghwan Bang ◽  
Tae-Ik Lee ◽  
...  

The effects of Ag nanoparticle (Ag NP) addition on interfacial reaction and mechanical properties of Sn–58Bi solder joints using ultra-fast laser soldering were investigated. Laser-assisted low-temperature bonding was used to solder Sn–58Bi based pastes, with different Ag NP contents, onto organic surface preservative-finished Cu pads of printed circuit boards. The solder joints after laser bonding were examined to determine the effects of Ag NPs on interfacial reactions and intermetallic compounds (IMCs) and high-temperature storage tests performed to investigate its effects on the long-term reliabilities of solder joints. Their mechanical properties were also assessed using shear tests. Although the bonding time of the laser process was shorter than that of a conventional reflow process, Cu–Sn IMCs, such as Cu6Sn5 and Cu3Sn, were well formed at the interface of the solder joint. The addition of Ag NPs also improved the mechanical properties of the solder joints by reducing brittle fracture and suppressing IMC growth. However, excessive addition of Ag NPs degraded the mechanical properties due to coarsened Ag3Sn IMCs. Thus, this research predicts that the laser bonding process can be applied to low-temperature bonding to reduce thermal damage and improve the mechanical properties of Sn–58Bi solders, whose microstructure and related mechanical properties can be improved by adding optimal amounts of Ag NPs.


2021 ◽  
Author(s):  
Samuel N. Hann ◽  
Jake Sanwell ◽  
Richard M. Carter ◽  
Ian Elder ◽  
Robert Lamb ◽  
...  

2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Sachiko Kawasaki ◽  
Yusuke Inagaki ◽  
Manabu Akahane ◽  
Akira Furukawa ◽  
Hideki Shigematsu ◽  
...  

Abstract Background Polyether-ether-ketone (PEEK) is increasingly being used for spinal applications. However, because of its biologically inactive nature, there are risks of false joint loosening and sinking. PEEK materials are coated with apatite to enhance the osteoconductive properties. In this study, we aimed to evaluate whether strontium apatite stimulate osteogenesis on the surface of PEEK by using the CO2 laser technique. Methods We prepared non-coated disks, laser-exposed disks without apatite, and four types of apatite-coated by laser PEEK disks (hydroxyapatite (HAP), strontium hydroxyapatite (SrHAP), silicate-substituted strontium apatite (SrSiP), and silicate-zinc-substituted strontium apatite (SrZnSiP)). A part of the study objective was testing various types of apatite coatings. Bone marrow mesenchymal cells (BMSCs) of rats were seeded at a density of 2 × 104/cm2 onto each apatite-coated, non-coated, and laser-irradiated PEEK disks. The disks were then placed in osteogenic medium, and alkaline phosphatase (ALP) staining and Alizarin red staining of BMSCs grown on PEEK disks were performed after 14 days of culture. The concentrations of osteocalcin (OC) and calcium in the culture medium were measured on days 8 and 14 of cell culture. Furthermore, mRNA expression of osteocalcin, ALP, runt-related transcription factor 2 (Runx2), collagen type 1a1 (Col1a1), and collagen type 4a1 (Col4a1) was evaluated by qPCR. Results The staining for ALP and Alizarin red S was more strongly positive on the apatite-coated PEEK disks compared to that on non-coated or laser-exposed without coating PEEK disks. The concentration of osteocalcin secreted into the medium was also significantly higher in case of the SrHAP, SrSiP, and SrZnSiP disks than that in the case of the non-coated on day14. The calcium concentration in the PEEK disk was significantly lower in all apatite-coated disks than that in the pure PEEK disks on day 14. In qPCR, OC and ALP mRNA expression was significantly higher in the SrZnSiP disks than that in the pure PEEK disks. Conclusions Our findings demonstrate that laser bonding of apatite—along with trace elements—on the PEEK disk surfaces might provide the material with surface property that enable better osteogenesis.


Author(s):  
Roberto Colasanti ◽  
Maurizio Iacoangeli ◽  
Alessandra Marini ◽  
Denis Aiudi ◽  
Erika Carrassi ◽  
...  

2020 ◽  
Vol 35 (12) ◽  
pp. 1258-1263
Author(s):  
Li-li WANG ◽  
◽  
Chao LIU ◽  
Yue-sheng SONG ◽  
Chu-hang WANG ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document