scholarly journals Ag–ZnO Nanocomposites Are Used for SERS Substrates and Promote the Coupling Reaction of PATP

Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 922
Author(s):  
Liping Ma ◽  
Qijia Zhang ◽  
Jia Li ◽  
Xuemei Lu ◽  
Ce Gao ◽  
...  

Noble metal-semiconductor nanocomposites have received extensive attention in Surface Enhanced Raman Scattering (SERS) due to their unique properties. In this paper, the Ag–ZnO nanocomposites are prepared by hydrothermal growth and simple chemical reduction immersion. The synthesized nanocomposite material simultaneously integrates the individual enhancement effects of the two materials in the SERS, such as the electromagnetic enhancement of silver nanoparticles and the chemical enhancement of ZnO semiconductor materials. Using this substrate, Rhodamine 6G molecules with a concentration as low as 10−8 M can be detected, and the coupling reaction of PATP can be effectively promoted. The nanocomposite materials prepared by selecting appropriate semiconductor materials and metal materials combined, could be potentially applied, as SERS substrates, in certain catalytic reactions.

The Analyst ◽  
2017 ◽  
Vol 142 (24) ◽  
pp. 4756-4764 ◽  
Author(s):  
Yi Li ◽  
Rui Lu ◽  
Jinyou Shen ◽  
Weiqing Han ◽  
Xiuyun Sun ◽  
...  

A flexible 3D hybrid PC/Ag surface-enhanced Raman scattering (SERS) substrate was fabricated through the combination of electrospinning and in situ chemical reduction.


1995 ◽  
Vol 49 (2) ◽  
pp. 193-199 ◽  
Author(s):  
E. A. Wachter ◽  
J. M. E. Storey ◽  
S. L. Sharp ◽  
K. T. Carron ◽  
Y. Jiang

Since the discovery of the surface-enhanced Raman scattering (SERS) effect, numerous substrate designs have been proposed for a variety of analytical applications. Although many of these have offered exceptional electromagnetic enhancement, the durability and reusability of substrates have not always been acceptable for routine analytical use. This paper discusses the design and testing of a new class of hybrid SERS substrates specifically designed to optimize electromagnetic enhancement while also affording exceptional ruggedness and reversibility of response under challenging conditions. Substrate templates are fabricated lithographically into a quartz surface, then a thin metal film is deposited, and finally the entire surface is coated with a protective layer. Examples of inorganic and organic protective coatings are provided. Analytes are measured in flowing streams of airborne vapor and aqueous liquid. Properly designed surface coatings serve a dual role as both a protective layer and as a rapidly reversible selective adsorbent for specific analytes.


2020 ◽  
Vol 30 (4) ◽  
pp. 345
Author(s):  
Bich Ngoc Nguyen Thi ◽  
Viet Ha Chu ◽  
Thi Thuy Nguyen ◽  
Trong Nghia Nguyen ◽  
Hong Nhung Tran

A flexible low-cost paper-based surface enhanced Raman scattering (SERS) substrate was successfully manufactured by a direct chemical reduction of silver nanoparticles (AgNPs) onto a common commercially available filter paper. Characterization of fabricated paper-based SERS substrate and the influences of the silver nitrate concentration, type of paper on SERS signal were systematically investigated. In order to fabricate SERS substrates with the highest quality, a suitable one from four different types of filter papers was chosen. The prepared SERS substrates have capability for detecting food toxic chemicals. The test of detecting melamine in aqueous solution was successfully demonstrated with the limit of detection for melamine is 10-7M.


2019 ◽  
Vol 10 ◽  
pp. 549-556 ◽  
Author(s):  
Yarong Su ◽  
Yuanzhen Shi ◽  
Ping Wang ◽  
Jinglei Du ◽  
Markus B Raschke ◽  
...  

In surface-enhanced Raman scattering (SERS), both chemical (CE) and electromagnetic (EM) field effects contribute to its overall enhancement. However, neither the quantification of their relative contributions nor the substrate dependence of the chemical effect have been well established. Moreover, there is to date no understanding of a possible coupling between both effects. Here we demonstrate how systematically engineered silver and gold planar and nanostructured substrates, covering a wide range of field enhancements, provide a way to determine relative contributions of chemical and electromagnetic field-enhancement in SERS measurements of benzenethiol. We find a chemical enhancement of 2 to 14 for different vibrational resonances when referencing against a vibrational mode that undergoes minimal CE. The values are independent of substrate type and independent of the enhancement of the electromagnetic intensity in the range from 1 to 106. This absence of correlation between chemical and electromagnetic enhancement resolves several long-standing controversies on substrate and intensity dependence of the chemical enhancement and allows for a more systematic design of SERS substrates with desired properties.


2016 ◽  
Vol 18 (14) ◽  
pp. 9405-9411 ◽  
Author(s):  
C. Awada ◽  
J. Plathier ◽  
C. Dab ◽  
F. Charra ◽  
L. Douillard ◽  
...  

The need for a dedicated spectroscopic technique with nanoscale resolution to characterize SERS substrates pushed us to develop a proof of concept of a functionalized tip–surface enhanced Raman scattering (FTERS) technique.


Sign in / Sign up

Export Citation Format

Share Document