Research on the High Temperature Constitutive Model of 300M Ultrahigh Strength Steel

2016 ◽  
Vol 836-837 ◽  
pp. 484-492
Author(s):  
Hui Ping Zhang ◽  
Na Zhao ◽  
Xu Shi ◽  
Xiao Lei Zhang ◽  
Yi Ren

300M ultrahigh strength steel has good mechanical properties. It has been widely used in the force bearing components of aircraft. In this paper, By using Gleeble1-500D thermal simulator, we studied the change regularity of stress-strain curve of 300M steel using hot compression deformation when temperature is from 800°C to1100°C, strain rate is from 0.001 S-1to 1 S-1 and the strain is 0.7.The experimental results showed that when the strain rate is constant, the flow stress and the peak stress decrease with the increase of deformation temperature. When the deformation temperature is constant, the flow stress and peak stress increase with the increase of strain rate. From the test, we got the true stress-strain curve, calculated the thermal deformation constants such as the deformation activation energy of 300M ultrahigh strength steel. Eventually, we built the thermal deformation constitutive model in hyperbolic sine form of 300M steel.

Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1257
Author(s):  
Shuling Gao ◽  
Guanhua Hu

An improved hydraulic servo structure testing machine has been used to conduct biaxial dynamic compression tests on eight types of engineered cementitious composites (ECC) with lateral pressure levels of 0, 0.125, 0.25, 0.5, 0.7, 0.8, 0.9, 1.0 (the ratio of the compressive strength applied laterally to the static compressive strength of the specimen), and three strain rates of 10−4, 10−3 and 10−2 s−1. The failure mode, peak stress, peak strain, deformation modulus, stress-strain curve, and compressive toughness index of ECC under biaxial dynamic compressive stress state are obtained. The test results show that the lateral pressure affects the direction of ECC cracking, while the strain rate has little effect on the failure morphology of ECC. The growth of lateral pressure level and strain rate upgrades the limit failure strength and peak strain of ECC, and the small improvement is achieved in elastic modulus. A two-stage ECC biaxial failure strength standard was established, and the influence of the lateral pressure level and peak strain was quantitatively evaluated through the fitting curve of the peak stress, peak strain, and deformation modulus of ECC under various strain rates and lateral pressure levels. ECC’s compressive stress-strain curve can be divided into four stages, and a normalized biaxial dynamic ECC constitutive relationship is established. The toughness index of ECC can be increased with the increase of lateral pressure level, while the increase of strain rate can reduce the toughness index of ECC. Under the effect of biaxial dynamic load, the ultimate strength of ECC is increased higher than that of plain concrete.


Metals ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 115 ◽  
Author(s):  
Amin Azimi ◽  
Gbadebo Moses Owolabi ◽  
Hamid Fallahdoost ◽  
Nikhil Kumar ◽  
Grant Warner

The present work deals with studies on the dynamic behavior of ultrafine grained AA2519 alloy synthesized via cryogenic forging (CF) and room temperature forging (RTF) techniques. A split-Hopkinson pressure bar was used to perform high strain rate tests on the processed samples and the microstructures of the samples were characterized before and after impact tests. Electron backscatter diffraction (EBSD) maps demonstrated a significant grain size refinement from ~740 nm to ~250 nm as a result of cryogenic plastic deformation showing higher dislocation densities and stored strains in the CF sample when compared to the RTF sample. This microstructure modification caused the increase of dynamic flow stress in this alloy. In addition, the aluminum matrix of the CF alloy is more densely populated with fragmented particles than the RTF alloy due to the heavier plastic deformation applied to the cryogenically forged alloy. The results obtained from the stress–strain curve for the RTF sample showed intense thermomechanical instabilities in the RTF sample which led to a severe thermal softening and the subsequent sharp drop in the flow stress. However, no significant decrease was observed in the stress–strain curve of the CF alloys with ultrafine grains which means that thermal softening would probably not be the most effective failure mechanism. Furthermore, higher level of sensitivity of CF alloys to strain rates was observed which is ascribed to transition of rate-controlling plastic deformation mechanisms. In the post-mortem microstructure investigation, deformed and transformed adiabatic shear bands (ASBs) were identified on the RTF alloy when the strain rate is over 4000 s−1 at which it had experienced a significant thermal softening. On the other hand, circular path and aligned split arcs are the various shapes of the deformed ASB seen at no earlier than 4500 s−1 in the CF alloys. This is associated with the crack failure caused by grain boundary sliding.


Metals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1214
Author(s):  
Song Zhang ◽  
Xuedao Shu ◽  
Jitai Wang ◽  
Yingxiang Xia

It is necessary to establish a constitutive model of 30CrMoA steel to optimize the forming shape and mechanical properties of high-speed train axles. The experimental stress–strain curve of 30CrMoA steel was obtained by an isothermal compression test on a Gleeble-3500 thermal simulation test machine under temperature of 1273~1423 K and strain rate of 0.01~10 s−1. Considering the effect of strain on the material constant, an empirical constitutive model was proposed with strain correction for 30CrMoA steel. In addition, the material constant in the constitutive model is determined by linear regression analysis of the experimental stress–strain curve. Comparing the theoretical value and experimental value of flow stress, the correlation R is 0.9828 and the average relative error (ARRE) is 4.652%. The constitutive model of 30CrMoA steel with strain correction can reasonably predict the flow stress under various conditions. The results provide an effective numerical tool for further study on accurate near-net forming of high-speed train axles.


2020 ◽  
Vol 2020 ◽  
pp. 1-10 ◽  
Author(s):  
Lei Wang ◽  
Hongming Su ◽  
Shiguan Chen ◽  
Yue Qin

To obtain the dynamic mechanical properties of frozen sandstone at different temperatures (i.e., 20°C, −10°C, −20°C, and −30°C), dynamic uniaxial compression tests of saturated sandstone are conducted using a split-Hopkinson pressure bar. The experimental results demonstrated that the brittleness of the saturated sandstone increased and its plasticity weakened with a decrease in temperature. The peak strength and dynamic elastic modulus of the sandstone were positively correlated with its strain rate. The peak stress was most sensitive to the strain rate at −10°C, and the elastic modulus was most sensitive to the strain rate at −30°C. According to the evident segmentation characteristics of the obtained stress-strain curve, a viscoelastic dynamic constitutive model considering the strain rate effect and temperature effect is developed; this model combines a nonlinear (or linear) body and a Maxwell body in parallel with a damage body. The applicability of the constitutive model is also verified using experimental data. The fitting results were demonstrated to be in good agreement with the experimental results. Furthermore, the fitting results serve as reference for the study of the constitutive model of weakly cemented soft rock and the construction of roadway freezing methods.


Author(s):  
L-Y Li ◽  
T C K Molyneaux

This paper presents an experimental study of the mechanical properties of brass at high strain rates. The brass tested is the copperzinc alpha-beta and beta two-phase alloy in the cold-worked state. Experiments were conducted using an extended tension split Hopkinson bar apparatus. It is found that, at lower strain rates, the stress-strain curve is smooth, exhibiting no well-defined yield stress, but at higher strain rates the stress-strain curve not only shows a well-defined yield stress but also displays a very pronounced drop in stress at yield. The flow stress is found to increase with increasing strain rate, but the increase is more significant for the yield stress than for the flow stress, showing that the yield stress is more sensitive to the strain rate than the flow stress away from the yield point. Based on the experimental results, empirical strain-rate-dependent constitutive equations are recommended. The suggested constitutive equations provide a reasonable estimate of the strain-rate-sensitive behaviour of materials.


2011 ◽  
Vol 189-193 ◽  
pp. 2925-2929
Author(s):  
Wen Ping Wang ◽  
Min Wan ◽  
Hai Bo Wang ◽  
Xiang Dong Wu ◽  
Ke Shan Diao

Uniaxile tensile tests of auto-body steel sheet were performed at strain rate of 10-4 to 101s-1 and temperature of room temperature to 180°C. Strain rate and temperature sensitivity of flow stress were analyzed. It is found that the stress-strain curve is obviously heavily weighted on the temperature and strain rate. A new constitutive model was constructed and implemented into Abaqus/Explicit commercial software using user subroutine VUMAT. Verification of constitutive model shows that it has good agreement with experimental result.


Metals ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 880 ◽  
Author(s):  
Rongchuang Chen ◽  
Haifeng Xiao ◽  
Min Wang ◽  
Jianjun Li

In this work, hot compression experiments of 300M steel were performed at 900–1150 °C and 0.01–10 s−1. The relation of flow stress and microstructure evolution was analyzed. The intriguing finding was that at a lower strain rate (0.01 s−1), the flow stress curves were single-peaked, while at a higher strain rate (10 s−1), no peak occurred. Metallographic observation results revealed the phenomenon was because dynamic recrystallization was more complete at a lower strain rate. In situ compression tests were carried out to compare with the results by ex situ compression tests. Hot working maps representing the influences of strains, strain rates, and temperatures were established. It was found that the power dissipation coefficient was not only related to the recrystallized grain size but was also related to the volume fraction of recrystallized grains. The optimal hot working parameters were suggested. This work provides comprehensive understanding of the hot workability of 300M steel in thermal compression.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 252
Author(s):  
Rongchuang Chen ◽  
Shiyang Zhang ◽  
Xianlong Liu ◽  
Fei Feng

To investigate the effect of hot working parameters on the flow behavior of 300M steel under tension, hot uniaxial tensile tests were implemented under different temperatures (950 °C, 1000 °C, 1050 °C, 1100 °C, 1150 °C) and strain rates (0.01 s−1, 0.1 s−1, 1 s−1, 10 s−1). Compared with uniaxial compression, the tensile flow stress was 29.1% higher because dynamic recrystallization softening was less sufficient in the tensile stress state. The ultimate elongation of 300M steel increased with the decrease of temperature and the increase of strain rate. To eliminate the influence of sample necking on stress-strain relationship, both the stress and the strain were calibrated using the cross-sectional area of the neck zone. A constitutive model for tensile deformation was established based on the modified Arrhenius model, in which the model parameters (n, α, Q, ln(A)) were described as a function of strain. The average deviation was 6.81 MPa (6.23%), showing good accuracy of the constitutive model.


2017 ◽  
Vol 872 ◽  
pp. 30-37
Author(s):  
Meng Han Wang ◽  
Kang Wei ◽  
Xiao Juan Li

The hot compressive deformation behaviors of ZHMn34-2-2-1 manganese brass are investigated on Thermecmastor-Z thermal simulator over wide processing domain of temperatures (923K-1073K) and strain rates (0.01s-1-10s-1). The true stress-strain curves exhibit a single peak stress, after which the stress monotonously decreases until a steady state stress occurs, indicating a typical dynamic recrystallization. A revised constitutive model coupling flow stress with strain, strain rate and deformation temperature is established with the material constants expressed by polynomial fitting of strain. Moreover, better prediction ability of the constitutive model is achieved by implementation of a simple approach for modified the Zener-Hollomon parameter considering the compensation of strain rate and temperature increment. By comparing the predicted and experimented values, the correlation coefficient and mean absolute relative error are 0.997 and 2.363%, respectively. The quantitative statistical results indicate that the proposed constitutive model can precisely characterize the hot deformation behavior of ZHMn34-2-2-1 manganese brass.


Sign in / Sign up

Export Citation Format

Share Document