scholarly journals How to Improve Physico-Chemical Properties of Silk Fibroin Materials for Biomedical Applications?—Blending and Cross-Linking of Silk Fibroin—A Review

Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1510
Author(s):  
Sylwia Grabska-Zielińska ◽  
Alina Sionkowska

This review supplies a report on fresh advances in the field of silk fibroin (SF) biopolymer and its blends with biopolymers as new biomaterials. The review also includes a subsection about silk fibroin mixtures with synthetic polymers. Silk fibroin is commonly used to receive biomaterials. However, the materials based on pure polymer present low mechanical parameters, and high enzymatic degradation rate. These properties can be problematic for tissue engineering applications. An increased interest in two- and three-component mixtures and chemically cross-linked materials has been observed due to their improved physico-chemical properties. These materials can be attractive and desirable for both academic, and, industrial attention because they expose improvements in properties required in the biomedical field. The structure, forms, methods of preparation, and some physico-chemical properties of silk fibroin are discussed in this review. Detailed examples are also given from scientific reports and practical experiments. The most common biopolymers: collagen (Coll), chitosan (CTS), alginate (AL), and hyaluronic acid (HA) are discussed as components of silk fibroin-based mixtures. Examples of binary and ternary mixtures, composites with the addition of magnetic particles, hydroxyapatite or titanium dioxide are also included and given. Additionally, the advantages and disadvantages of chemical, physical, and enzymatic cross-linking were demonstrated.

Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1105
Author(s):  
Sylwia Grabska-Zielińska ◽  
Alina Sionkowska ◽  
Ângela Carvalho ◽  
Fernando J. Monteiro

Blending of different biopolymers, e.g., collagen, chitosan, silk fibroin and cross-linking modifications of these mixtures can lead to new materials with improved physico-chemical properties, compared to single-component scaffolds. Three-dimensional scaffolds based on three-component mixtures of silk fibroin, collagen and chitosan, chemically cross-linked, were prepared and their physico-chemical and biological properties were evaluated. A mixture of EDC (N-(3-dimethylaminopropyl)-N’-ethylcarbodiimide hydrochloride) and NHS (N-hydroxysuccinimide) was used as a cross-linking agent. FTIR was used to observe the position of the peaks characteristic for collagen, chitosan and silk fibroin. The following properties depending on the scaffold structure were studied: swelling behavior, liquid uptake, moisture content, porosity, density, and mechanical parameters. Scanning Electron Microscopy imaging was performed. Additionally, the biological properties of these materials were assessed, by metabolic activity assay. The results showed that the three-component mixtures, cross-linked by EDC/NHS and prepared by lyophilization method, presented porous structures. They were characterized by a high swelling degree. The composition of scaffolds has an influence on mechanical properties. All of the studied materials were cytocompatible with MG-63 osteoblast-like cells.


Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 798
Author(s):  
Bruno Thorihara Tomoda ◽  
Murilo Santos Pacheco ◽  
Yasmin Broso Abranches ◽  
Juliane Viganó ◽  
Fabiana Perrechil ◽  
...  

Silk fibroin (SF) is a promising and versatile biodegradable protein for biomedical applications. This study aimed to develop a prolonged release device by incorporating SF microparticles containing dyes into SF hydrogels. The influence of dyes on incorporation and release kinetics in SF based devices were evaluated regarding their hydrophilicity, molar mass, and cationic/anionic character. Hydrophobic and cationic dyes presented high encapsulation efficiency, probably related to electrostatic and hydrophobic interactions with SF. The addition of SF microparticles in SF hydrogels was an effective method to prolong the release, increasing the release time by 10-fold.


Author(s):  
L. Yu. Martynov ◽  
O. A. Naumova ◽  
N. K. Zaytsev ◽  
I. Yu. Lovchinovsky

The review describes the application of solid electrodes based on copper for voltammetric analysis of major classes of organic and inorganic substances over the last fifty years. Despite the fact that there are many reviews of individual solid electrodes this review offers the first comprehensive report on all forms of copper electrodes. The advantages and disadvantages of copper electrodes in comparison with electrodes made of other metals are discussed. Varieties of copper electrodes, their basic physico-chemical properties and some specific characteristics of their surface are described. The electrochemical behavior of copper in aqueous solutions and electrocatalytic mechanisms of transformations of matter on its surface are reported. Examples of the use of electrochemical copper sensors for flow-injection analysis and liquid chromatography are given. Recent trends of the use of copper micro- and nanostructured electrodes in electrochemical analysis are reviewed. The prospects of using copper as a material for the creation of new electrochemical sensors are shown.


Biomaterials ◽  
1990 ◽  
Vol 11 (6) ◽  
pp. 430-434 ◽  
Author(s):  
Norihiko Minoura ◽  
Masuhiro Tsukada ◽  
Masanobu Nagura

Polymer ◽  
1985 ◽  
Vol 26 (9) ◽  
pp. 1336-1348 ◽  
Author(s):  
Paolo Ferruti ◽  
Maria Antonietta Marchisio ◽  
Rolando Barbucci

Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 4084
Author(s):  
Petr Rozhin ◽  
Costas Charitidis ◽  
Silvia Marchesan

Self-assembling peptides and carbon nanomaterials have attracted great interest for their respective potential to bring innovation in the biomedical field. Combination of these two types of building blocks is not trivial in light of their very different physico-chemical properties, yet great progress has been made over the years at the interface between these two research areas. This concise review will analyze the latest developments at the forefront of research that combines self-assembling peptides with carbon nanostructures for biological use. Applications span from tissue regeneration, to biosensing and imaging, and bioelectronics.


2016 ◽  
Vol 12 (6) ◽  
pp. 1136-1158 ◽  
Author(s):  
ValeriaS. Marangoni ◽  
Juliana Cancino-Bernardi ◽  
Valtencir Zucolotto

2017 ◽  
Vol 68 (2) ◽  
pp. 384-386 ◽  
Author(s):  
Danut Vasile ◽  
Raluca Iancu ◽  
Camelia Bogdanici ◽  
Emil Ungureanu ◽  
Dana Ciobotea ◽  
...  

Hyaluronic acid is a mucopolysaccharide encountered in most body fluids and extracellular matrix. The aim of our review is to summarize current evidence about chemico-physical properties of hyaluronic acid, highlighting biomedical applications of hyaluronan derivatives. It is a glycosaminoglycan made of repeating disaccharide units containing a carboxylate group, four hydroxyl groups and one carboxylate group, with hydrophilic properties. Its particular structure with multiple coils forming an entangled network results in unique pseudoplastic and viscoelastic characteristics. Its viscous and elastic behavior, depending on the applied strain, makes hyaluronan widely applicable in biomedical field. The large amount of functions and applications is determined by the physico-chemical properties, which allows a polymorphism of the hyaluronic acid structures depending on the molecular weight variations, concentration and ionic status. It is currently used in ophthalmology, orthopedics and rheumatology, in plastic surgery, surgery and otolaryngology as well. Already widely used in clinical practice, hyaluronic acid proves to be often the best solution for difficult medical problems. Future developments in nanomedicine and drug delivery linked to hyaluronic acid are emerging.


Sign in / Sign up

Export Citation Format

Share Document