scholarly journals Biomaterials with Potential Use in Bone Tissue Regeneration—Collagen/Chitosan/Silk Fibroin Scaffolds Cross-Linked by EDC/NHS

Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1105
Author(s):  
Sylwia Grabska-Zielińska ◽  
Alina Sionkowska ◽  
Ângela Carvalho ◽  
Fernando J. Monteiro

Blending of different biopolymers, e.g., collagen, chitosan, silk fibroin and cross-linking modifications of these mixtures can lead to new materials with improved physico-chemical properties, compared to single-component scaffolds. Three-dimensional scaffolds based on three-component mixtures of silk fibroin, collagen and chitosan, chemically cross-linked, were prepared and their physico-chemical and biological properties were evaluated. A mixture of EDC (N-(3-dimethylaminopropyl)-N’-ethylcarbodiimide hydrochloride) and NHS (N-hydroxysuccinimide) was used as a cross-linking agent. FTIR was used to observe the position of the peaks characteristic for collagen, chitosan and silk fibroin. The following properties depending on the scaffold structure were studied: swelling behavior, liquid uptake, moisture content, porosity, density, and mechanical parameters. Scanning Electron Microscopy imaging was performed. Additionally, the biological properties of these materials were assessed, by metabolic activity assay. The results showed that the three-component mixtures, cross-linked by EDC/NHS and prepared by lyophilization method, presented porous structures. They were characterized by a high swelling degree. The composition of scaffolds has an influence on mechanical properties. All of the studied materials were cytocompatible with MG-63 osteoblast-like cells.

Materials ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 3577 ◽  
Author(s):  
Ilaria Silvestro ◽  
Iolanda Francolini ◽  
Valerio Di Lisio ◽  
Andrea Martinelli ◽  
Loris Pietrelli ◽  
...  

Scaffolds are three-dimensional porous structures that must have specific requirements to be applied in tissue engineering. Therefore, the study of factors affecting scaffold performance is of great importance. In this work, the optimal conditions for cross-linking preformed chitosan (CS) scaffolds by the tripolyphosphate polyanion (TPP) were investigated. The effect on scaffold physico-chemical properties of different concentrations of chitosan (1 and 2% w/v) and tripolyphosphate (1 and 2% w/v) as well as of cross-linking reaction times (2, 4, or 8 h) were studied. It was evidenced that a low CS concentration favored the formation of three-dimensional porous structures with a good pore interconnection while the use of more severe conditions in the cross-linking reaction (high TPP concentration and crosslinking reaction time) led to scaffolds with a suitable pore homogeneity, thermal stability, swelling behavior, and mechanical properties, but having a low pore interconnectivity. Preliminary biocompatibility tests showed a good osteoblasts’ viability when cultured on the scaffold obtained by CS 1%, TPP 1%, and an 8-h crosslinking time. These findings suggest how modulation of scaffold cross-linking conditions may permit to obtain chitosan scaffold with properly tuned morphological, mechanical and biological properties for application in the tissue regeneration field.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1510
Author(s):  
Sylwia Grabska-Zielińska ◽  
Alina Sionkowska

This review supplies a report on fresh advances in the field of silk fibroin (SF) biopolymer and its blends with biopolymers as new biomaterials. The review also includes a subsection about silk fibroin mixtures with synthetic polymers. Silk fibroin is commonly used to receive biomaterials. However, the materials based on pure polymer present low mechanical parameters, and high enzymatic degradation rate. These properties can be problematic for tissue engineering applications. An increased interest in two- and three-component mixtures and chemically cross-linked materials has been observed due to their improved physico-chemical properties. These materials can be attractive and desirable for both academic, and, industrial attention because they expose improvements in properties required in the biomedical field. The structure, forms, methods of preparation, and some physico-chemical properties of silk fibroin are discussed in this review. Detailed examples are also given from scientific reports and practical experiments. The most common biopolymers: collagen (Coll), chitosan (CTS), alginate (AL), and hyaluronic acid (HA) are discussed as components of silk fibroin-based mixtures. Examples of binary and ternary mixtures, composites with the addition of magnetic particles, hydroxyapatite or titanium dioxide are also included and given. Additionally, the advantages and disadvantages of chemical, physical, and enzymatic cross-linking were demonstrated.


2020 ◽  
Vol 27 (28) ◽  
pp. 4584-4592 ◽  
Author(s):  
Avik Khan ◽  
Baobin Wang ◽  
Yonghao Ni

Regenerative medicine represents an emerging multidisciplinary field that brings together engineering methods and complexity of life sciences into a unified fundamental understanding of structure-property relationship in micro/nano environment to develop the next generation of scaffolds and hydrogels to restore or improve tissue functions. Chitosan has several unique physico-chemical properties that make it a highly desirable polysaccharide for various applications such as, biomedical, food, nutraceutical, agriculture, packaging, coating, etc. However, the utilization of chitosan in regenerative medicine is often limited due to its inadequate mechanical, barrier and thermal properties. Cellulosic nanomaterials (CNs), owing to their exceptional mechanical strength, ease of chemical modification, biocompatibility and favorable interaction with chitosan, represent an attractive candidate for the fabrication of chitosan/ CNs scaffolds and hydrogels. The unique mechanical and biological properties of the chitosan/CNs bio-nanocomposite make them a material of choice for the development of next generation bio-scaffolds and hydrogels for regenerative medicine applications. In this review, we have summarized the preparation method, mechanical properties, morphology, cytotoxicity/ biocompatibility of chitosan/CNs nanocomposites for regenerative medicine applications, which comprises tissue engineering and wound dressing applications.


2021 ◽  
Vol 22 (7) ◽  
pp. 3391
Author(s):  
Sylwia Grabska-Zielińska ◽  
Alina Sionkowska ◽  
Ewa Olewnik-Kruszkowska ◽  
Katarzyna Reczyńska ◽  
Elżbieta Pamuła

The aim of this work was to compare physicochemical properties of three dimensional scaffolds based on silk fibroin, collagen and chitosan blends, cross-linked with dialdehyde starch (DAS) and dialdehyde chitosan (DAC). DAS was commercially available, while DAC was obtained by one-step synthesis. Structure and physicochemical properties of the materials were characterized using Fourier transfer infrared spectroscopy with attenuated total reflectance device (FTIR-ATR), swelling behavior and water content measurements, porosity and density observations, scanning electron microscopy imaging (SEM), mechanical properties evaluation and thermogravimetric analysis. Metabolic activity with AlamarBlue assay and live/dead fluorescence staining were performed to evaluate the cytocompatibility of the obtained materials with MG-63 osteoblast-like cells. The results showed that the properties of the scaffolds based on silk fibroin, collagen and chitosan can be modified by chemical cross-linking with DAS and DAC. It was found that DAS and DAC have different influence on the properties of biopolymeric scaffolds. Materials cross-linked with DAS were characterized by higher swelling ability (~4000% for DAS cross-linked materials; ~2500% for DAC cross-linked materials), they had lower density (Coll/CTS/30SF scaffold cross-linked with DAS: 21.8 ± 2.4 g/cm3; cross-linked with DAC: 14.6 ± 0.7 g/cm3) and lower mechanical properties (maximum deformation for DAC cross-linked scaffolds was about 69%; for DAS cross-linked scaffolds it was in the range of 12.67 ± 1.51% and 19.83 ± 1.30%) in comparison to materials cross-linked with DAC. Additionally, scaffolds cross-linked with DAS exhibited higher biocompatibility than those cross-linked with DAC. However, the obtained results showed that both types of scaffolds can provide the support required in regenerative medicine and tissue engineering. The scaffolds presented in the present work can be potentially used in bone tissue engineering to facilitate healing of small bone defects.


2008 ◽  
Vol 55-57 ◽  
pp. 685-688 ◽  
Author(s):  
J. Chamchongkaset ◽  
Sorada Kanokpanont ◽  
David L. Kaplan ◽  
Siriporn Damrongsakkul

Silk has been used commercially as biomedical sutures for decades. Recently silk fibroin, especially from Bombyx mori silkworm, has been explored for many tissue engineering applications such as bone and cartilage due to its impressive biological compatibility and mechanical properties. In Thailand, Thai native silkworms have been long cultivated. Distinct characteristics of cocoon Thai silk are its yellow color and coarse filament. There is more sericin in Thai silk than in other Bombyx mori silks. These characteristics provide Thai silk a unique texture for textile industry. It is therefore the aim of this study to develop three-dimensional silk fibroin-based scaffolds from Thai yellow cocoon “Nangnoi-Srisaket” of Bombyx mori silkworms using salt-leaching method. To enhance the biological properties, type A gelatin, the denature form of collagen having good biocompactibility, was used to conjugate with silk fibroin scaffolds. The pore size of salt-leached silk fibroin scaffold structure represented the size of salt crystals used (600-710µm). After gelatin conjugation, gelatin was partly formed fibers inside the pores of silk fibroin scaffolds resulting in fiber-like structure with highly interconnection. Gelatin conjugation enhanced the compressive modulus of silk fibroin scaffolds by 93%. The results on in vitro culture using mouse osteoblast-like cells (MC3T3-E1) showed that gelatin conjugation could promote the cell proliferation in silk fibroin scaffolds. Moreover, the observed morphology of cells proliferated inside the scaffold after 14 days of culture showed the larger spreading area of cells on conjugated gelatin/silk fibroin scaffolds, compared to round-shaped cells on silk fibroin scaffolds. The results implied that Thai silk fibroin looked promising to be applied in tissue engineering and gelatin conjugation on Thai silk fibroin scaffolds could enhance the biological properties of scaffolds.


Biomaterials ◽  
1990 ◽  
Vol 11 (6) ◽  
pp. 430-434 ◽  
Author(s):  
Norihiko Minoura ◽  
Masuhiro Tsukada ◽  
Masanobu Nagura

Polymers ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 61 ◽  
Author(s):  
Yannan Liu ◽  
Juan Gu ◽  
Daidi Fan

A novel, three-dimensional, porous, human-like collagen (HLC)/nano-hydroxyapatite (n-HA) scaffold cross-linked by 1,2,7,8-diepoxyoctane (DEO) was successfully fabricated, which showed excellent mechanical and superior biological properties for bone tissue regeneration in this study. The physicochemical characterizations of different n-HA/HLC/DEO (nHD) scaffolds were investigated by determining the morphology, compression stress, elastic modulus, Young’s modulus and enzymatic hydrolysis behavior in vitro. The results demonstrated that nHD-2 and nHD-3 scaffolds showed superior mechanical properties and resistance to enzymatic hydrolysis compared to nHD-1 scaffolds. The cell viability, live cell staining and cell adhesion analysis results demonstrated that nHD-2 scaffolds exhibited low cytotoxicity and excellent cytocompatibility compared with nHD-1 and nHD-3 scaffolds. Furthermore, subcutaneous injections of nHD-2 scaffolds in rabbits produced superior anti-biodegradation effects and histocompatibility compared with injections of nHD-1 and nHD-3 scaffolds after 1, 2 and 4 weeks. In addition, the repair of bone defects in rabbits demonstrated that nHD-2 scaffolds presented an improved ability for guided bone regeneration and reconstruction compared to commercially available bone scaffold composite hydroxyapatite/collagen (HC). Collectively, the results show that nHD-2 scaffolds show promise for application in bone tissue engineering due to their excellent mechanical properties, anti-biodegradation, anti-biodegradation, biocompatibility and bone repair effects.


2020 ◽  
Vol 21 (20) ◽  
pp. 7577
Author(s):  
Noriyuki Uchida ◽  
Takahiro Muraoka

Peptide-based fibrous supramolecular assemblies represent an emerging class of biomaterials that can realize various bioactivities and structures. Recently, a variety of peptide fibers with attractive functions have been designed together with the discovery of many peptide-based self-assembly units. Cross-linking of the peptide fibers is a key strategy to improve the functions of these materials. The cross-linking of peptide fibers forming three-dimensional networks in a dispersion can lead to changes in physical and chemical properties. Hydrogelation is a typical change caused by cross-linking, which makes it applicable to biomaterials such as cell scaffold materials. Cross-linking methods, which have been conventionally developed using water-soluble covalent polymers, are also useful in supramolecular peptide fibers. In the case of peptide fibers, unique cross-linking strategies can be designed by taking advantage of the functions of amino acids. This review focuses on the current progress in the design of cross-linked peptide fibers and their applications.


Materials ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3433
Author(s):  
Sylwia Grabska-Zielińska ◽  
Alina Sionkowska ◽  
Catarina C. Coelho ◽  
Fernando J. Monteiro

In this study, three-dimensional materials based on blends of silk fibroin (SF), collagen (Coll), and chitosan (CTS) cross-linked by glyoxal solution were prepared and the properties of the new materials were studied. The structure of the composites and the interactions between scaffold components were studied using FTIR spectroscopy. The microstructure was observed using a scanning electron microscope. The following properties of the materials were measured: density and porosity, moisture content, and swelling degree. Mechanical properties of the 3D materials under compression were studied. Additionally, the metabolic activity of MG-63 osteoblast-like cells on materials was examined. It was found that the materials were characterized by a high swelling degree (up to 3000% after 1 h of immersion) and good porosity (in the range of 80–90%), which can be suitable for tissue engineering applications. None of the materials showed cytotoxicity toward MG-63 cells.


Sign in / Sign up

Export Citation Format

Share Document