Synthesis, Physico-Chemical Properties, and Biomedical Applications of Gold Nanorods—A Review

2016 ◽  
Vol 12 (6) ◽  
pp. 1136-1158 ◽  
Author(s):  
ValeriaS. Marangoni ◽  
Juliana Cancino-Bernardi ◽  
Valtencir Zucolotto
Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1510
Author(s):  
Sylwia Grabska-Zielińska ◽  
Alina Sionkowska

This review supplies a report on fresh advances in the field of silk fibroin (SF) biopolymer and its blends with biopolymers as new biomaterials. The review also includes a subsection about silk fibroin mixtures with synthetic polymers. Silk fibroin is commonly used to receive biomaterials. However, the materials based on pure polymer present low mechanical parameters, and high enzymatic degradation rate. These properties can be problematic for tissue engineering applications. An increased interest in two- and three-component mixtures and chemically cross-linked materials has been observed due to their improved physico-chemical properties. These materials can be attractive and desirable for both academic, and, industrial attention because they expose improvements in properties required in the biomedical field. The structure, forms, methods of preparation, and some physico-chemical properties of silk fibroin are discussed in this review. Detailed examples are also given from scientific reports and practical experiments. The most common biopolymers: collagen (Coll), chitosan (CTS), alginate (AL), and hyaluronic acid (HA) are discussed as components of silk fibroin-based mixtures. Examples of binary and ternary mixtures, composites with the addition of magnetic particles, hydroxyapatite or titanium dioxide are also included and given. Additionally, the advantages and disadvantages of chemical, physical, and enzymatic cross-linking were demonstrated.


Polymer ◽  
1985 ◽  
Vol 26 (9) ◽  
pp. 1336-1348 ◽  
Author(s):  
Paolo Ferruti ◽  
Maria Antonietta Marchisio ◽  
Rolando Barbucci

Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 4084
Author(s):  
Petr Rozhin ◽  
Costas Charitidis ◽  
Silvia Marchesan

Self-assembling peptides and carbon nanomaterials have attracted great interest for their respective potential to bring innovation in the biomedical field. Combination of these two types of building blocks is not trivial in light of their very different physico-chemical properties, yet great progress has been made over the years at the interface between these two research areas. This concise review will analyze the latest developments at the forefront of research that combines self-assembling peptides with carbon nanostructures for biological use. Applications span from tissue regeneration, to biosensing and imaging, and bioelectronics.


2017 ◽  
Vol 68 (2) ◽  
pp. 384-386 ◽  
Author(s):  
Danut Vasile ◽  
Raluca Iancu ◽  
Camelia Bogdanici ◽  
Emil Ungureanu ◽  
Dana Ciobotea ◽  
...  

Hyaluronic acid is a mucopolysaccharide encountered in most body fluids and extracellular matrix. The aim of our review is to summarize current evidence about chemico-physical properties of hyaluronic acid, highlighting biomedical applications of hyaluronan derivatives. It is a glycosaminoglycan made of repeating disaccharide units containing a carboxylate group, four hydroxyl groups and one carboxylate group, with hydrophilic properties. Its particular structure with multiple coils forming an entangled network results in unique pseudoplastic and viscoelastic characteristics. Its viscous and elastic behavior, depending on the applied strain, makes hyaluronan widely applicable in biomedical field. The large amount of functions and applications is determined by the physico-chemical properties, which allows a polymorphism of the hyaluronic acid structures depending on the molecular weight variations, concentration and ionic status. It is currently used in ophthalmology, orthopedics and rheumatology, in plastic surgery, surgery and otolaryngology as well. Already widely used in clinical practice, hyaluronic acid proves to be often the best solution for difficult medical problems. Future developments in nanomedicine and drug delivery linked to hyaluronic acid are emerging.


Molecules ◽  
2020 ◽  
Vol 25 (7) ◽  
pp. 1539 ◽  
Author(s):  
Cornelia Vasile ◽  
Daniela Pamfil ◽  
Elena Stoleru ◽  
Mihaela Baican

New trends in biomedical applications of the hybrid polymeric hydrogels, obtained by combining natural polymers with synthetic ones, have been reviewed. Homopolysaccharides, heteropolysaccharides, as well as polypeptides, proteins and nucleic acids, are presented from the point of view of their ability to form hydrogels with synthetic polymers, the preparation procedures for polymeric organic hybrid hydrogels, general physico-chemical properties and main biomedical applications (i.e., tissue engineering, wound dressing, drug delivery, etc.).


2008 ◽  
Vol 8 (7) ◽  
pp. 3247-3271 ◽  
Author(s):  
Mini Namdeo ◽  
Sutanjay Saxena ◽  
Rasika Tankhiwale ◽  
M. Bajpai ◽  
Y. M. Mohan ◽  
...  

In recent past magnetic nanoparticles have been explored for a number of biomedical applications due to their superparamagnetic moment with high magnetic saturation value. For these biomedical applications, magnetic nanoparticles require being monodispersed so that the individual nanoparticle has almost identical physico-chemical properties for biodistribution, bioelimination and contrast imaging potential. Further, the surface functionalization/modification of magnetic nanoparticles ultimately facilitate the protein or DNA separation, detection and magnetic resonance imaging contrast, drug delivery and hyperthermia applications. The essential goal of this review is to evaluate the recent advances of magnetic nanoparticles for tumor, brain targeting and hyperthermia applications.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2198
Author(s):  
Aura-Cătălina Mocanu ◽  
Florin Miculescu ◽  
George E. Stan ◽  
Andreea-Mădălina Pandele ◽  
Mihai Alin Pop ◽  
...  

A successful bone-graft-controlled healing entails the development of novel products with tunable compositional and architectural features and mechanical performances and is, thereby, able to accommodate fast bone in-growth and remodeling. To this effect, graphene nanoplatelets and Luffa-fibers were chosen as mechanical reinforcement phase and sacrificial template, respectively, and incorporated into a hydroxyapatite and brushite matrix derived by marble conversion with the help of a reproducible technology. The bio-products, framed by a one-stage-addition polymer-free fabrication route, were thoroughly physico-chemically investigated (by XRD, FTIR spectroscopy, SEM, and nano-computed tomography analysis, as well as surface energy measurements and mechanical performance assessments) after sintering in air or nitrogen ambient. The experiments exposed that the coupling of a nitrogen ambient with the graphene admixing triggers, in both compact and porous samples, important structural (i.e., decomposition of β-Ca3(PO4)2 into α-Ca3(PO4)2 and α-Ca2P2O7) and morphological modifications. Certain restrictions and benefits were outlined with respect to the spatial porosity and global mechanical features of the derived bone scaffolds. Specifically, in nitrogen ambient, the graphene amount should be set to a maximum 0.25 wt.% in the case of compact products, while for the porous ones, significantly augmented compressive strengths were revealed at all graphene amounts. The sintering ambient or the graphene addition did not interfere with the Luffa ability to generate 3D-channels-arrays at high temperatures. It can be concluded that both Luffa and graphene agents act as adjuvants under nitrogen ambient, and that their incorporation-ratio can be modulated to favorably fit certain foreseeable biomedical applications.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Sandeep Mittal ◽  
Veeresh Kumar ◽  
Nitesh Dhiman ◽  
Lalit Kumar Singh Chauhan ◽  
Renu Pasricha ◽  
...  

Abstract Graphene derivatives (GD) are currently being evaluated for technological and biomedical applications owing to their unique physico-chemical properties over other carbon allotrope such as carbon nanotubes (CNTs). But, the possible association of their properties with underlying in vitro effects have not fully examined. Here, we assessed the comparative interaction of three GD - graphene oxide (GO), thermally reduced GO (TRGO) and chemically reduced GO (CRGO), which significantly differ in their lateral size and functional groups density, with phenotypically different human lung cells; bronchial epithelial cells (BEAS-2B) and alveolar epithelial cells (A549). The cellular studies demonstrate that GD significantly ineternalize and induce oxidative stress mediated cytotoxicity in both cells. The toxicity intensity was in line with the reduced lateral size and increased functional groups revealed more toxicity potential of TRGO and GO respectively. Further, A549 cells showed more susceptibility than BEAS-2B which reflected cell type dependent differential cellular response. Molecular studies revealed that GD induced differential cell death mechanism which was efficiently prevented by their respective inhibitors. This is prior study to the best of our knowledge involving TRGO for its safety evaluation which provided invaluable information and new opportunities for GD based biomedical applications.


Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 798
Author(s):  
Bruno Thorihara Tomoda ◽  
Murilo Santos Pacheco ◽  
Yasmin Broso Abranches ◽  
Juliane Viganó ◽  
Fabiana Perrechil ◽  
...  

Silk fibroin (SF) is a promising and versatile biodegradable protein for biomedical applications. This study aimed to develop a prolonged release device by incorporating SF microparticles containing dyes into SF hydrogels. The influence of dyes on incorporation and release kinetics in SF based devices were evaluated regarding their hydrophilicity, molar mass, and cationic/anionic character. Hydrophobic and cationic dyes presented high encapsulation efficiency, probably related to electrostatic and hydrophobic interactions with SF. The addition of SF microparticles in SF hydrogels was an effective method to prolong the release, increasing the release time by 10-fold.


Sign in / Sign up

Export Citation Format

Share Document