scholarly journals The State of Starch/Hydroxyapatite Composite Scaffold in Bone Tissue Engineering with Consideration for Dielectric Measurement as an Alternative Characterization Technique

Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1960
Author(s):  
Mohd Riza Mohd Roslan ◽  
Nadhiya Liyana Mohd Kamal ◽  
Muhammad Farid Abdul Khalid ◽  
Nashrul Fazli Mohd Nasir ◽  
Ee Meng Cheng ◽  
...  

Hydroxyapatite (HA) has been widely used as a scaffold in tissue engineering. HA possesses high mechanical stress and exhibits particularly excellent biocompatibility owing to its similarity to natural bone. Nonetheless, this ceramic scaffold has limited applications due to its apparent brittleness. Therefore, this had presented some difficulties when shaping implants out of HA and for sustaining a high mechanical load. Fortunately, these drawbacks can be improved by combining HA with other biomaterials. Starch was heavily considered for biomedical device applications in favor of its low cost, wide availability, and biocompatibility properties that complement HA. This review provides an insight into starch/HA composites used in the fabrication of bone tissue scaffolds and numerous factors that influence the scaffold properties. Moreover, an alternative characterization of scaffolds via dielectric and free space measurement as a potential contactless and nondestructive measurement method is also highlighted.

2015 ◽  
Vol 3 (23) ◽  
pp. 4679-4689 ◽  
Author(s):  
Ya-Ping Guo ◽  
Jun-Jie Guan ◽  
Jun Yang ◽  
Yang Wang ◽  
Chang-Qing Zhang ◽  
...  

A bioinspired strategy has been developed to fabricate a hybrid nanostructured hydroxyapatite–chitosan composite scaffold for bone tissue engineering.


2016 ◽  
Vol 23 (1) ◽  
pp. 37-44 ◽  
Author(s):  
Weizhong Yang ◽  
Yong Yi ◽  
Yuan Ma ◽  
Li Zhang ◽  
Jianwen Gu ◽  
...  

AbstractNano biphasic calcium phosphate (BCP) particles were synthesized using the sol-gel method. As-prepared BCP particles were combined with poly-L-lactide (PLLA) to fabricate nano-BCP/PLLA composite scaffold through a series of processing steps containing solvent self-diffusion, hot-pressing, and particulate leaching. The composite had a suitable porous structure for bone tissue engineering scaffold. In comparison, micro-BCP/PLLA scaffold was studied as well. Nano-BCP particles were distributed homogeneously in the PLLA matrix, and much more tiny crystallites exposed on the surface of the pore wall. Due to the finer inorganic particle distribution in the PLLA phase and the larger area of the bioactive phase exposed in the pore wall surface, nano-BCP/PLLA scaffold had enhanced compressive strength, good bioactivity, and superior cell viability. A nonstoichiometric apatite layer could be rapidly formed on the surface of nano- BCP/PLLA when soaked in simulated body fluid. The MG-63 cell viability of nano-BCP/PLLA scaffold is significantly higher than that of micro-BCP/PLLA scaffold. Therefore, nano-BCP/PLLA composite may be a suitable alternative for bone tissue engineering scaffold.


2017 ◽  
Vol 28 (16) ◽  
pp. 1966-1983 ◽  
Author(s):  
Yamina Boukari ◽  
Omar Qutachi ◽  
David J. Scurr ◽  
Andrew P. Morris ◽  
Stephen W. Doughty ◽  
...  

2019 ◽  
Vol 97 ◽  
pp. 325-335 ◽  
Author(s):  
Peng Chen ◽  
Leyun Liu ◽  
Jiaqi Pan ◽  
Jie Mei ◽  
Chaorong Li ◽  
...  

Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1962 ◽  
Author(s):  
Abdullah M. Cakmak ◽  
Semra Unal ◽  
Ali Sahin ◽  
Faik N. Oktar ◽  
Mustafa Sengor ◽  
...  

Three-dimensional (3D) printing application is a promising method for bone tissue engineering. For enhanced bone tissue regeneration, it is essential to have printable composite materials with appealing properties such as construct porous, mechanical strength, thermal properties, controlled degradation rates, and the presence of bioactive materials. In this study, polycaprolactone (PCL), gelatin (GEL), bacterial cellulose (BC), and different hydroxyapatite (HA) concentrations were used to fabricate a novel PCL/GEL/BC/HA composite scaffold using 3D printing method for bone tissue engineering applications. Pore structure, mechanical, thermal, and chemical analyses were evaluated. 3D scaffolds with an ideal pore size (~300 µm) for use in bone tissue engineering were generated. The addition of both bacterial cellulose (BC) and hydroxyapatite (HA) into PCL/GEL scaffold increased cell proliferation and attachment. PCL/GEL/BC/HA composite scaffolds provide a potential for bone tissue engineering applications.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Ran Zhang ◽  
Xuewen Li ◽  
Yao Liu ◽  
Xiaobo Gao ◽  
Tong Zhu ◽  
...  

Biocompatible scaffolding materials play an important role in bone tissue engineering. This study sought to develop and characterize a nano-hydroxyapatite (nHA)/collagen I (ColI)/multi-walled carbon nanotube (MWCNT) composite scaffold loaded with recombinant bone morphogenetic protein-9 (BMP-9) for bone tissue engineering by in vitro and in vivo experiments. The composite nHA/ColI/MWCNT scaffolds were fabricated at various concentrations of MWCNTs (0.5, 1, and 1.5% wt) by blending and freeze drying. The porosity, swelling rate, water absorption rate, mechanical properties, and biocompatibility of scaffolds were measured. After loading with BMP-9, bone marrow mesenchymal stem cells (BMMSCs) were seeded to evaluate their characteristics in vitro and in a critical sized defect in Sprague-Dawley rats in vivo. It was shown that the 1% MWCNT group was the most suitable for bone tissue engineering. Our results demonstrated that scaffolds loaded with BMP-9 promoted differentiation of BMMSCs into osteoblasts in vitro and induced more bone formation in vivo. To conclude, nHA/ColI/MWCNT scaffolds loaded with BMP-9 possess high biocompatibility and osteogenesis and are a good candidate for use in bone tissue engineering.


2007 ◽  
Vol 361-363 ◽  
pp. 119-122 ◽  
Author(s):  
J.H. Lim ◽  
J.H. Park ◽  
Eui Kyun Park ◽  
Hae Jung Kim ◽  
Il Kyu Park ◽  
...  

An appropriate scaffold, which provides structural support for transplanted cells and acts as a vehicle for the delivery of biologically active molecules, is critical for tissue engineering. We developed a fully interconnected globular porous biphasic calcium phosphate ceramic scaffold by adopting a foaming method, and evaluated its efficiency as a bone substitute and a scaffold for bone tissue engineering by in vitro and in vivo biocompatible analysis and its osteogenic healing capacity in rat tibial bone defects. They have spherical pores averaging 400um in diameter and interconnecting interpores averaging 70um in diameter with average 85% porosity. They elicited no cytotoxicity and noxious effect on cellular proliferation and osteoblastic differentiation during the cell-scaffold construct formation. Also the bone defects grafted with fully interconnected globular porous biphasic calcium phosphate ceramic blocks revealed excellent bone healing within 3 weeks. These findings suggest that the fully interconnected porous biphasic calcium phosphate scaffold formed by the foaming method can be a promising bone substitute and a scaffold for bone tissue engineering.


Sign in / Sign up

Export Citation Format

Share Document