scholarly journals The Effect of Er:YAG Laser on a Shear Bond Strength Value of Orthodontic Brackets to Enamel—A Preliminary Study

Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2093
Author(s):  
Jan Kiryk ◽  
Jacek Matys ◽  
Anna Nikodem ◽  
Karolina Burzyńska ◽  
Kinga Grzech-Leśniak ◽  
...  

We sought to evaluate the effects of Er:YAG laser (LightTouch, LightInstruments, Israel) conditioning on enamel roughness and shear bond strength of orthodontic brackets on enamel. Eighteen human molars (n = 9) and premolars (n = 9), were divided into 3 groups depending on the enamel conditioning method; Er:YAG laser (G1, n = 6), conventional etching with 37% orthophosphoric acid (G2, n = 6), Er:YAG laser combined with conventional etching (G3, n = 6). Er:YAG laser parameters were as follows: energy: 100 mJ, frequency: 10 Hz, exposure time: 10 s, applicator diameter: 600 μm, fluence: 35.37 J/cm2, distance: 1 mm away from a tooth, cooling: 80%. An MTS 858 MiniBionix® machine was used to determine the shear bond strength (MTS System, Eden Prairie, MN, USA). The enamel structure was assessed using X-ray microtomography (SkyScan 1172, Bruker, Kontich, Belgium). The highest values of shear bond strength were obtained in the G3 group (9.23 ± 2.38 MPa) and the lowest values in the G2 group (6.44 ± 2.11 MPa) (p < 0.05). A significant change in the enamel surface was noted after applying laser, reaching up to 9% of enamel thickness, which was not observed in the etched samples. Moreover, the Er:YAG laser-irradiated enamel surface was characterized by the greatest roughness. The combined use of an Er:YAG laser with a conventional etching improves the adhesion of composite materials to the tooth.

2018 ◽  
Vol 29 (2) ◽  
pp. 128-132 ◽  
Author(s):  
Gabriela Cristina Santin ◽  
Alexandra Mussolino de Queiroz ◽  
Regina Guenka Palma-Dibb ◽  
Harley Francisco de Oliveira ◽  
Paulo Nelson Filho ◽  
...  

Abstract Patients undergoing radiotherapy treatment present more susceptibility to dental caries and the use of an orthodontic device increases this risk factor due to biofilm accumulation around the brackets. The objective of this study was to evaluate the shear bond strength to irradiated permanent teeth of orthodontic brackets bonded with conventional glass ionomer cement and resin-modified glass ionomer cement due to the fluoride release capacity of these materials. Ninety prepared human premolars were divided into 6 groups (n=15), according to the bonding material and use or not of radiation: CR: Transbond XT composite resin; RMGIC: Fuji Ortho LC conventional glass ionomer cement; GIC: Ketac Cem Easymix resin-modified glass ionomer cement. The groups were irradiated (I) or non-irradiated (NI) prior to bracket bonding. The specimens were subjected to a fractioned radiation dose of 2 Gy over 5 consecutive days for 6 weeks. After the radiotherapy, the brackets were bonded on the specimens with Transbond XT, Fuji Ortho LC and Ketac Cem Easymix. After 24 h, the specimens were subjected to shear bond strength test. The image of enamel surface (classified by Adhesive Remnant Index - ARI) was also evaluated and its frequency was checked among groups/subgroups. The shear bond strength variable was evaluated with ANOVA and Tukey’s post-hoc test. GIC group showed the lowest adhesion values among the groups (p<0.05). There was no statistically significant difference among non-irradiated and irradiated groups (p>0.05). As for the ARI, the CR-I group showed the highest material retention on enamel surface among the irradiated groups. RMGIC group showed the highest values for shear bond strength and presented ARI acceptable for clinical practices.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yomna A. Nabawy ◽  
Tarek N. Yousry ◽  
Nadia M. El-Harouni

Abstract Background Increased risk of enamel demineralization during and after orthodontic treatment raises the demand for better preventive measures including combinations of laser, CPP-ACP, and fluoride. The combination of Er,Cr:YSGG laser with CPP-ACP was proved to have a synergetic effect compared to each of them alone. Shear bond strength (SBS) of orthodontic brackets bonded to the enamel surface after being treated with preventive measures is critical. The aim of this study was to compare the SBS and failure mode of metallic brackets bonded to teeth with no pretreatment and pretreated enamel surface, either with Er,Cr:YSGG laser alone or combined with CPP-ACP. Methods Sixty sound extracted human premolar teeth were allocated randomly to 3 groups: In Group 1 (control), teeth were etched and bonded directly; in Group 2, laser pretreatment of the enamel surface was done followed by etching and bonding as in the control group; in Group 3, the enamel surface was lased then CPP-ACP was applied according to the manufacturer instructions, etched and bonded. SBS and Adhesive remnant index (ARI) were evaluated. Results No significant differences were found between the 3 groups neither in the SBS nor in the ARI scores. Conclusions The use of combined Er,Cr:YSGG laser with CPP-ACP as a preventive measure before bonding orthodontic brackets does not endanger the bracket’s bonding strength.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Maria Francesca Sfondrini ◽  
Danilo Fraticelli ◽  
Paola Gandini ◽  
Andrea Scribante

Purpose. The aim of this study was to assess the effect of water and saliva contamination on the shear bond strength and failure site of orthodontic brackets and lingual buttons.Materials and Methods. 120 bovine permanent mandibular incisors were randomly divided into 6 groups of 20 specimens each. Both orthodontic brackets and disinclusion buttons were tested under three different enamel surface conditions: (a) dry, (b) water contamination, and (c) saliva contamination. Brackets and buttons were bonded to the teeth and subsequently tested using a Instron universal testing machine. Shear bond strength values and adhesive failure rate were recorded. Statistical analysis was performed using ANOVA and Tukey tests (strength values) and Chi squared test (ARI Scores).Results. Noncontaminated enamel surfaces showed the highest bond strengths for both brackets and buttons. Under water and saliva contamination orthodontic brackets groups showed significantly lower shear strengths than disinclusion buttons groups. Significant differences in debond locations were found among the groups under the various enamel surface conditions.Conclusions. Water and saliva contamination of enamel during the bonding procedure lowers bond strength values, more with orthodontic brackets than with disinclusion buttons.


2015 ◽  
Vol 39 (4) ◽  
pp. 348-357 ◽  
Author(s):  
RM Agarwal ◽  
R Yeluri ◽  
C Singh ◽  
AK Munshi

Objective: To suggest Papacarie® as a new deproteinizing agent in comparison with indigenously prepared 10% papain gel before and after acid etching that may enhance the quality of the bond between enamel surface and composite resin complex. Study design: One hundred and twenty five extracted human premolars were utilized and divided into five groups: In the group 1, enamel surface was etched and primer was applied. In group 2, treatment with papacarie® for 60 seconds followed by etching and primer application. In group 3, etching followed by treatment with papacarie® for 60 seconds and primer application. In group 4, treatment with 10% papain gel for 60 seconds followed by etching and primer application. In group 5, etching followed by treatment with 10% papain gel for 60 seconds and primer application . After bonding the brackets, the mechanical testing was performed using a Universal testing machine. The failure mode was analyzed using an adhesive remnant index. The etching patterns before and after application of papacarie® and 10% papain gel was also evaluated using SEM. The values obtained for shear bond strength were submitted to analysis of variance and Tukey test (p &lt; 0.05). Results: It was observed that group 2 and group 4 had the highest shear bond strength and was statistically significant from other groups (p=0.001). Regarding Adhesive remnant index no statistical difference was seen between the groups (p=0.538). Conclusion: Papacarie® or 10% papain gel can be used to deproteinize the enamel surface before acid etching to enhance the bond strength of orthodontic brackets.


Author(s):  
Semanur Özüdoğru ◽  
Firdevs Kahvecioğlu ◽  
Gül Tosun ◽  
Yasemin Gündoğdu ◽  
Hamdi Şükür Kılıç

2011 ◽  
Vol 82 (1) ◽  
pp. 36-41 ◽  
Author(s):  
Asli Baysal ◽  
Tancan Uysal

Abstract Objective: To evaluate and compare the effects of enamel microabrasion, casein phosphopeptide-amorphous calcium phosphate (CPP-ACP), and their combination on the shear bond strength (SBS) of orthodontic brackets bonded to demineralized enamel surface. Materials and Methods: One hundred human first premolar teeth were randomly allocated to one of five groups. Group I was considered as the control of other groups. For the remaining groups, demineralization was performed via solutions. In group II, brackets were directly bonded to the demineralized enamel surface. CPP-ACP was applied in group III, microabrasion was performed in group IV, and both microabrasion and CPP-ACP application were performed in group V. The specimens were tested for SBS. Bond failures were scored according to the Adhesive Remnant Index (ARI). Analysis of variance and Tukey tests were used to compare the SBS of the groups. ARI scores of the groups were evaluated with a G-test. The statistical significance was set at P &lt;. 05 level. Results: Statistically significant difference was found among the five investigated groups (F  =  111.870; P &lt; .001). The SBS of groups II and IV were significantly lower than the other groups. No statistically significant difference was found among groups I (control; mean 24.1 ± 4.1 MPa), III (mean 22.0 ± 3.6 MPa), and V (mean 24.3 ± 1.9 MPa). Microabrasion and combination with CPP-ACP showed higher SBS compared to the control group. The differences between ARI scores of the groups were statistically significant (P &lt; .001). Conclusion: CPP-ACP pretreatment, microabrasion of the enamel, and the combination of these two methods improve the bonding to demineralized enamel.


2007 ◽  
Vol 25 (6) ◽  
pp. 508-512 ◽  
Author(s):  
Aylin Gokcelik ◽  
Yonca Ozel ◽  
Emre Ozel ◽  
Neslihan Arhun ◽  
Nuray Attar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document