scholarly journals Polydispersity vs. Monodispersity. How the Properties of Ni-Ag Core-Shell Nanoparticles Affect the Conductivity of Ink Coatings

Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2304
Author(s):  
Anna Pajor-Świerzy ◽  
Dawid Staśko ◽  
Radosław Pawłowski ◽  
Grzegorz Mordarski ◽  
Alexander Kamyshny ◽  
...  

The effect of polydispersity of nickel-silver core-shell nanoparticles (Ni-Ag NPs) on the conductivity of ink coatings was studied. Ni-Ag NPs of various average diameters (100, 220, and 420 nm) were synthesized and utilized for the preparation of conductive inks composed of monodisperse NPs and their polydisperse mixtures. The shell thickness of synthesized Ni-Ag NPs was found to be in the range of 10–20 nm and to provide stability of a core metal to oxidation for at least 6 months. The conductivity of metallic films formed by inks with monodisperse Ni-Ag NPs was compared with those formed by polydisperse inks. In all cases, the optimal conditions for the formation of conductive patterns (weight ratio of monodisperse NPs for polydisperse composition, the concentration of the wetting agent, sintering temperature, and duration) were determined. It was found that metallic films formed by polydisperse ink containing 100, 220, and 420 nm Ni-Ag NPs with a mass ratio of 1:1.5:0.5, respectively, are characterized by the lowest resistivity, 10.9 µΩ·cm, after their thermal post-coating sintering at 300 °C for 30 min that is only 1.6 higher than that of bulk nickel.

Materials ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 305
Author(s):  
Anna Pajor-Świerzy ◽  
Radosław Pawłowski ◽  
Piotr Sobik ◽  
Alexander Kamyshny ◽  
Krzysztof Szczepanowicz

Low-cost metallic nanoink based on nickel–silver core–shell nanoparticles (Ni@Ag NPs) was used for the formation of conductive metallic coatings with low sintering temperature, which can be successfully applied for replacement of currently used silver-based nanoinks in printed electronics. The effect of oxalic acid (OA) on the sintering temperature and conductivity of coatings formed by Ni@Ag NPs was evaluated. It was found that the addition of OA to the ink formulation and post-printing treatment of deposited films with this acid provided a noticeable decrease in the sintering temperature required for obtaining conductive patterns that is especially important for utilizing the polymeric substrates. The obtained resistivity of metallic coatings after sintering at temperature as low as 100 °C was found to be 30 µΩ·cm, only ~4 times higher compared to the resistivity of bulk Ni that is promising for future application of such materials for fabrication of low-cost flexible printed patterns.


2005 ◽  
Vol 106 ◽  
pp. 23-26 ◽  
Author(s):  
P.V. Kazakevich ◽  
A.V. Simakin ◽  
V.V. Voronov ◽  
G.A. Shafeev ◽  
D. Starikov ◽  
...  

Experimental results are presented on the ablation of copper and brass targets in a liquid environment: ethanol, acetone, or water by irradiation with either a pulsed copper vapour laser (0.51 μm) or a pulsed Nd:YAG laser (1.06 μm). The ablated material was ejected into the surrounding liquid as nanoparticles of average size 20 nm. The nanoparticle composition depends on the nature of the liquid. Ablation of 60%Cu, 40%Zn brass in ethanol results in formation of core-shell nanoparticles. Brass nanoparticles were characterized by a well-defined plasmon peak at 510-520 nm.


The Analyst ◽  
2019 ◽  
Vol 144 (14) ◽  
pp. 4250-4257 ◽  
Author(s):  
Yuqing Chen ◽  
Yawen Lian ◽  
Mengna Huang ◽  
Lin Wei ◽  
Lehui Xiao

A fluorometric and colorimetric dual mode sensing platform based on hybridized carbon dots (Cdots) and gold–silver core–shell nanoparticles (Au@Ag NPs) has been established for the sensitive detection of trace Cu2+ ions in aqueous solution.


2015 ◽  
Vol 2015 ◽  
pp. 1-7
Author(s):  
Tahani R. Al-Biladi ◽  
A. S. Al Dwayyan ◽  
M. Naziruddin Khan ◽  
Saif M. H. Qaid ◽  
Khalid Al Zahrani

Nanostructured fluorescent pyrromethene (PM) doped-silica core-shell particles were successfully prepared by Stöber process. The average size of the particles was in the range of 10–20 nm measured by TEM micrograph. The atomic structure and morphology of PM 597/SiO2core/shell nanoparticles were studied by AFM and SEM, respectively. Absorption and emission spectra of the PM 597/SiO2core/shell nanoparticles under the UV irradiation were studied and not significantly influenced at the position of peaks. Finally, amplified spontaneous emission (ASE) and photobleaching of dye were examined and found no significant influence on the peaks of PM dye due to the formation of smaller sizes of PM 597/SiO2core/shell nanoparticles. The observed PM 597/SiO2core/shell nanoparticles were different in shapes with smaller size distribution and highly luminescent. Majority of nanoparticles were roughly spherical with many of them aggregated. The less photobleaching of dye core may be due to the protection of pumped energy by SiO2shell and restricts the leakage of dye.


2020 ◽  
Author(s):  
Jakob Hübner ◽  
Vincent Pichot ◽  
Emeline Lobry ◽  
Tanja Deckert-Gaudig ◽  
Volker Deckert ◽  
...  

<p>Mixtures of RDX and TNT or hexolite mixtures are well known precursors for nanodiamond detonation syntheses. In this study diverse nanoscale hexolite mixtures varying in mass ratios of RDX and TNT are synthesized via Spray Flash Evaporation. The hexolite mixtures are characterized by confocal Raman spectroscopy and tip-enhanced Raman spectroscopy (TERS) to obtain information about their molecular structure composition. The marker bands of pristine RDX and TNT enable the identification and distinction of both compounds in the Raman spectra. Confocal Raman spectroscopy indicates an intermixture of RDX and TNT molecules on the nanoscale since both marker bands are detected in all spectra. TERS investigations of single hexolite particles reveal that the particle surfaces are mainly composed of TNT. The comparison of confocal Raman and TERS results suggests that (depending on the mass ratio) hexolite particles are either inhomogeneous patchy RDX/TNT nanoparticles or anisotropic RDX/TNT core-shell nanoparticles. A building mechanism to explain the formation/growth of those nanoparticles is derived from the spectroscopic data and the dynamics of the SFE process. Finally, a correlation between the TNT shell thickness, the symmetry of the anisotropic hexolite precursor nanoparticles, and the resulting nanodiamond sizes is discussed in detail.</p>


2020 ◽  
Vol 11 (2) ◽  
pp. 1525-1536 ◽  
Author(s):  
Yuexiang Liu ◽  
Luyu Gao ◽  
Jiang Yi ◽  
Yuting Fan ◽  
Xuli Wu ◽  
...  

Resveratrol (RES)-loaded protein–polysaccharide nanoparticles were fabricated through simple electrostatic interactions with oppositely charged α-lactalbumin (ALA) and chitosan (CHI) with a mass ratio of 5 : 1 without the addition of NaCl at pH 6.5.


Nano LIFE ◽  
2012 ◽  
Vol 02 (01) ◽  
pp. 1250002 ◽  
Author(s):  
MINGBIN ZHENG ◽  
PING GONG ◽  
DONGXUE JIA ◽  
CUIFANG ZHENG ◽  
YIFAN MA ◽  
...  

We reported the development of multifunctional poly (lactic-co-glycolic acid) (PLGA)-lecithin-polyethylene glycol (PEG) core-shell nanoparticles (NPs) that combined the beneficial properties of liposome and polymeric NPs for chemotherapeutics delivery. The particle size, surface charge and surface functional groups were easily tunable in highly reproducible manner by various formulation parameters such as lipid/polymer, 1, 2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE)-PEG- COOH /lecithin, DSPE-PEG- COOH /DSPE-PEG- NH2 mass ratio and modification of terminal groups of DSPE-PEG. We encapsulated model chemotherapy drug, hydrophilic cisplatin (DDP) or hydrophobic DDP prodrug, in the NPs and showed high encapsulation efficiency, excellent stability, specific FA targeting recognition for MCF-7 cells with over FA receptors expression and pretty cytotoxicity. Such PLGA–lecithin–PEG core-shell nanoparticles (NPs) were proved to be a promising drug delivery nanocarrier for cancer-targeted therapy.


Nanomaterials ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 571 ◽  
Author(s):  
Lothar Veith ◽  
Antje Vennemann ◽  
Daniel Breitenstein ◽  
Carsten Engelhard ◽  
Birgit Hagenhoff ◽  
...  

Amorphous silica nanoparticles comprise a class of widely used industrial nanomaterials, which may elicit acute inflammation in the lung. These materials have a large specific surface to which components of the pulmonary micro-milieu can bind. To conduct appropriate binding studies, paramagnetic Fe2O3/SiO2 core/shell nanoparticles (Fe-Si-NP) may be used as an easy-to-isolate silica surrogate, if several prerequisites are fulfilled. To this end, we investigated the distribution of Fe, Si, protein and phosphatidylcholine (PC) by Time-of-Flight secondary ion mass spectrometry (ToF-SIMS) in cryo-sections from the rat lungs to which Fe-Si-NP had been administered for 30 min. Regions-of-interest were identified and analyzed with incident light and enhanced dark-field microscopy (DFM). Fe-Si-NP particles (primary particle size by electron microscopy: 10–20 nm; aggregate size by tracking analysis: 190 ± 20 nm) and agglomerates thereof were mainly attached to alveolar walls and only marginally internalized by cells such as alveolar macrophages. The localization of Fe-Si-NP by DFM was confirmed by ToF-SIMS signals from both, Fe and Si ions. With respect to an optimized signal-to-noise ratio, Fe+, Si+, CH4N+ and the PC head group (C5H15NO4P+) were the most versatile ions to detect iron, silica, protein, and PC, respectively. Largely congruent Fe+ and Si+ signals demonstrated that the silica coating of Fe-Si-NP remained stable under the conditions of the lung. PC, as a major lipid of the pulmonary surfactant, was colocalized with the protein signal alongside alveolar septa, but was not detected on Fe-Si-NP, suggesting that silica nanoparticles do not adsorb lipids of the lung surfactant under native conditions. The study shows that ToF-SIMS is a valuable technique with adequate spatial resolution to analyze nanoparticles together with organic molecules in the lung. The paramagnetic Fe-Si-NP appear well suited to study the binding of proteins to silica nanomaterials in the lung.


2020 ◽  
Author(s):  
Jakob Hübner ◽  
Vincent Pichot ◽  
Emeline Lobry ◽  
Tanja Deckert-Gaudig ◽  
Volker Deckert ◽  
...  

<p>Mixtures of RDX and TNT or hexolite mixtures are well known precursors for nanodiamond detonation syntheses. In this study diverse nanoscale hexolite mixtures varying in mass ratios of RDX and TNT are synthesized via Spray Flash Evaporation. The hexolite mixtures are characterized by confocal Raman spectroscopy and tip-enhanced Raman spectroscopy (TERS) to obtain information about their molecular structure composition. The marker bands of pristine RDX and TNT enable the identification and distinction of both compounds in the Raman spectra. Confocal Raman spectroscopy indicates an intermixture of RDX and TNT molecules on the nanoscale since both marker bands are detected in all spectra. TERS investigations of single hexolite particles reveal that the particle surfaces are mainly composed of TNT. The comparison of confocal Raman and TERS results suggests that (depending on the mass ratio) hexolite particles are either inhomogeneous patchy RDX/TNT nanoparticles or anisotropic RDX/TNT core-shell nanoparticles. A building mechanism to explain the formation/growth of those nanoparticles is derived from the spectroscopic data and the dynamics of the SFE process. Finally, a correlation between the TNT shell thickness, the symmetry of the anisotropic hexolite precursor nanoparticles, and the resulting nanodiamond sizes is discussed in detail.</p>


Sign in / Sign up

Export Citation Format

Share Document