scholarly journals Fatigue Behavior of Linear Friction Welded Ti-6Al-4V and Ti-6Al-2Sn-4Zr-2Mo-0.1Si Dissimilar Welds

Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3136
Author(s):  
Sidharth Rajan ◽  
Priti Wanjara ◽  
Javad Gholipour ◽  
Abu Syed Kabir

The use of joints fabricated from dissimilar titanium alloys allows the design of structures with local properties tailored to different service requirements. To develop welded structures for aerospace applications, particularly under critical loading, an understanding of the fatigue behavior is crucial, but remains limited, especially for solid-state technologies such as linear friction welding (LFW). This paper presents the fatigue behavior of dissimilar titanium alloys, Ti–6Al–4V (Ti64) and Ti–6Al–2Sn–4Zr–2Mo–0.1Si (Ti6242), joined by LFW with the aim of characterizing the stress versus number of cycles to failure (S-N) curves in both the low- and high-cycle fatigue regimes. Prior to fatigue testing, metallurgical characterization of the dissimilar alloy welds indicated softening in the heat-affected zone due to the retention of metastable β, and the typical practice of stress relief annealing (SRA) for alleviating the residual stresses was effective also in transforming the metastable β to equilibrated levels of α + β phases and recovering the hardness. Thus, the dissimilar alloy joints were fatigue-tested in the SRA (750 °C for 2 h) condition and their low- and high-cycle fatigue behaviors were compared to those of the Ti64 and Ti6242 base metals (BMs). The low-cycle fatigue (LCF) behavior of the dissimilar Ti6242–Ti64 linear friction welds was characterized by relatively high maximum stress values (~ 900 to 1100 MPa) and, in the high-cycle fatigue (HCF) regime, the fatigue limit of 450 MPa at 107 cycles was just slightly higher than that of the Ti6242 BM (434 MPa) and the Ti64 BM (445 MPa). Fatigue failure of the dissimilar titanium alloy welds in the low-cycle and high-cycle regimes occurred, respectively, on the Ti64 and Ti6242 sides, roughly 3 ± 1 mm away from the weld center, and the transitioning was reasoned based on the microstructural characteristics of the BMs.

Author(s):  
Catalin Teodoriu

Fatigue is the most common known problem of drill pipes, since the combination of make-ups performed to connect the pipes and all the external loads, together with the threaded geometry of the connections, will stimulate the appearance of high stress points, cracks and finally promoting considerable economic losses. When threaded connections are used to connect the casing string, the fatigue resistance of the connection will affect the whole integrity of the string, and thus, in most cases, it is lower as the casing body. Generally, fatigue is classified as low-cycle fatigue and multi- or high-cycle fatigue. For Oil Country Tubular Goods (OCTG), a typical high cycle fatigue is represented by drill pipe fatigue in deviated wells. Unlike drill pipe, the casing may be exposed both to low-cycle as well as to high-cycle fatigue. Low-cycle fatigue is a common type of failure when the applied loads induce high stresses in the metallic material. The number of cycles may vary from as low as 10 up to 100. High-cycle fatigue requires a large number of cycles to failure. In order to avoid catastrophic failures, high-cycle fatigue resistance is usually considered to be sufficient if the number of cycles is above 106. The oil business has focused excessively on testing drilling risers and drill pipes under fatigue loads, but when it comes to casing and tubing the experimental approach may require different solutions. Drilling with casing opened the intensive testing of casing connections against fatigue resistance. Moreover, recent papers have shown intensive work on redesigning connections to withstand fatigue. New applications like rotating while running require a rethinking of testing strategy of Casing and Tubing. The following paper focuses on answering the question whether we test enough. The first part compares existing testing facilities, followed by an intensive discussion about the true loads of a casing or tubing connection. Using public testing data, the second part of the paper tries to identify how far the results provided by various types of testing machines can be compared with each other. For example, we found that low cycle fatigue results may not fully reflect the predictions based on extrapolations of high cycle fatigue results.


2015 ◽  
Vol 825-826 ◽  
pp. 150-157 ◽  
Author(s):  
Alexandra Müller ◽  
Anja Weidner ◽  
Horst Biermann

During technical operation, high performance materials are partially exposed to high frequency cyclic loading conditions. Furthermore, the small strains in the very high cycle fatigue (VHCF)-regime lead to accumulative damage which causes crack initiation related to an appropriate local deformation leading to final fatal fracture. At the same time, quite high requirements with regard to high number of cycles without any damage are demanded for many applications. Fields of application of these light-weight, but expensive materials, are e.g. in the automobile industry (e.g. engine blocks, cylinder heads, brakes).The fatigue behavior of Al-matrix composites (Al-MMCs) reinforced by alumina particles (15 vol.% Al2O3) or short fibers (20 vol.% Saffil), respectively, was already intensively studied in the LCF and HCF range. The present study is focusing on investigations in the very high cycle fatigue regime at stress amplitudes up to 140 MPa to reach fatigue life of about 1010 cycles. All experiments were carried out using an ultrasonic fatigue testing device under symmetric loading conditions (R=-1). Fatigue tests were accompanied by in situ thermography measurements to record the temperature of the whole specimen and to find “hot spots” indicating changes in microstructure and therefore the initiation or growth of cracks. Moreover, the resonant frequency as well as the damage parameter were evaluated to determine the beginning of damage. For a better understanding of the damage mechanism (matrix decohesion, matrix failure or failure of reinforcement) all fractured surfaces were investigated by scanning electron microscopy. The combination of these methods contributes to a better understanding of the underlying mechanism of damage in aluminum-matrix-composites.


Metals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1200
Author(s):  
Ashutosh Sharma ◽  
Min Chul Oh ◽  
Byungmin Ahn

We reviewed the research and developments in the field of fatigue failure, focusing on very-high cycle fatigue (VHCF) of metals, alloys, and steels. We also discussed ultrasonic fatigue testing, historical relevance, major testing principles, and equipment. The VHCF behavior of Al, Mg, Ni, Ti, and various types of steels were analyzed. Furthermore, we highlighted the major defects, crack initiation sites, fatigue models, and simulation studies to understand the crack development in VHCF regimes. Finally, we reviewed the details regarding various issues and challenges in the field of VHCF for engineering metals and identified future directions in this area.


2018 ◽  
Vol 165 ◽  
pp. 06002
Author(s):  
Golta Khatibi ◽  
Ali Mazloum-Nejadari ◽  
Martin Lederer ◽  
Mitra Delshadmanesh ◽  
Bernhard Czerny

In this study, the influence of microstructure on the cyclic behaviour and lifetime of Cu and Au wires with diameters of 25μm in the low and high cycle fatigue regimes was investigated. Low cycle fatigue (LCF) tests were conducted with a load ratio of 0.1 and a strain rate of ~2e-4. An ultrasonic resonance fatigue testing system working at 20 kHz was used to obtain lifetime curves under symmetrical loading conditions up to very high cycle regime (VHCF). In order to obtain a total fatigue life model covering the low to high cycle regime of the thin wires by considering the effects of mean stress, a four parameter lifetime model is proposed. The effect of testing frequency on high cycle fatigue data of Cu is discussed based on analysis of strain rate dependency of the tensile properties with the help of the material model proposed by Johnson and Cook.


Author(s):  
Mohamed E. M. El-Sayed

Fatigue is the most critical failure mode of many mechanical component. Therefore, fatigue life assessment under fluctuating loads during component development is essential. The most important requirement for any fatigue life assessment is knowledge of the relationships between stresses, strains, and fatigue life for the material under consideration. These relationships, for any given material, are mostly unique and dependent on its fatigue behavior. Since the work of Wöhler in the 1850’s, the uniaxial stress versus cycles to fatigue failure, which is known as the S-N curve, is typically utilized for high-cycle fatigue. In general, high cycle fatigue implies linear elastic behavior and causes failure after more than 104 or 105 cycles. However. the transition from low cycle fatigue to high cycle fatigue, which is unique for each material based on its properties, has not been well examined. In this paper, this transition is studied and a material dependent number of cycles for the transition is derived based on the material properties. Some implications of this derivation, on assessing and approximating the crack initiation fatigue life, are also discussed.


2015 ◽  
Vol 70 ◽  
pp. 278-288 ◽  
Author(s):  
J.C. Stinville ◽  
F. Bridier ◽  
D. Ponsen ◽  
P. Wanjara ◽  
P. Bocher

2009 ◽  
Vol 417-418 ◽  
pp. 225-228 ◽  
Author(s):  
Ryuichiro Ebara ◽  
R. Nohara ◽  
Rintaro Ueji ◽  
A. Ogura ◽  
Y. Ishihara ◽  
...  

High cycle fatigue behavior of the representative cold forging die steel, YXR3 with Rockwell C scale hardness number of 60.0 is investigated. Axial fatigue strength of plane and notched bar specimens with stress concentration factor, Kt of 1.5, 2.0 and 2.5 is presented. The emphasis is placed upon the subsurface crack initiation observed on notched specimens failed at number of cycles over than 106 cycles. Crack initiation and propagation mode of cold forging die steel is discussed with respect to fracture surface morphology.


Author(s):  
Nie Baohua ◽  
Zhao Zihua ◽  
Ouyang Yongzhong ◽  
Chen Dongchu ◽  
Chen Hong ◽  
...  

The effect of low cycle fatigue (LCF) pre-damage on the subsequent very high cycle fatigue (VHCF) behavior is investigated in TC21 titanium alloy. LCF pre-damage is applied under 1.8% strain amplitude up to various fractions of the expected life and subsequent VHCF properties are determined using ultrasonic fatigue tests. Results show that 5% of LCF pre-damage insignificantly affects the VHCF limit due to the absent of pre-crack, but decreases the subsequent fatigue crack initiation life estimated by Pairs’ law. Pre-cracks introduced by 10% and 20% of LCF pre-damage significantly reduce the subsequent VHCF limits. The crack initiation site shifts from subsurface-induced fracture for undamaged and 5% of LCF pre-damage specimens to surface pre-crack for 10% and 20% of LCF pre-damage specimens in very high cycle region. The fracture mechanism analysis indicate that LCF pre-crack will re-start to propagate under subsequently low stress amplitude when stress intensity factor of pre-crack is larger than its threshold. Furthermore, the predicted fatigue limits based on EI Haddad model for the LCF pre-damage specimens well agree with the experimental results.


2020 ◽  
pp. 145-153
Author(s):  
M. V Bannikov ◽  
V. A Oborin ◽  
D. A Bilalov ◽  
O. B Naimark

The paper presents an experimental methodology aimed at evaluating a very-high cycle resource for aviation titanium alloys Vt-6 (Ti6Al4V) and Ti45Nb for medical applications with different microstructures (large-crystal and submicrocrystalline ones). The submicrocrystalline (SMC) state was obtained by an intensive plastic deformation realized in two ways: the three-dimensional forging for Ti45Nb and radial-shear rolling for Ti6Al4V. The experimental program tests high-cycle and very-high-cycle loading (number of cycles 107-109) realized using the in situ determination method of the accumulation of the irreversible fatigue damage by analyzing nonlinear forms of feedback in a closed system ultrasonic fatigue setup. This makes it possible to establish the connection of the microscopic fatigue mechanisms with the model views and consider the stages of the damage development based on the nonlinear kinetics of the defect accumulation under cyclic loading in high- and gigacycle fatigue modes. We established various relations between changes in the amplitude of the second harmonic of vibrations of the free end of the samples with different internal structures, which are associated with the mechanisms of stress relaxation and damage accumulation. The grain size reduction in Ti45Nb alloy by the three-dimensional forging improved the fatigue properties by 1.3-1.5 times, whereas for VT-6 alloy, the radial-shear rolling method could not increase the fatigue properties in the very high cycle fatigue range, which may be caused by the presence of large residual internal stresses. Based on the scale parameters obtained earlier from the fracture surface morphology and the relations established in this work, the kinetic equations for the origin and growth of fatigue cracks in the gigacycle loading range will be constructed. This equation, based on the empirical power parameters related to the structure of the material, will allow us to determine the number of cycles for the origin of an internal crack and its growth to the surface.


Sign in / Sign up

Export Citation Format

Share Document