scholarly journals Experimental Investigation of the Performance of a Hybrid Self-Healing System in Porous Asphalt under Fatigue Loadings

Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3415
Author(s):  
Shi Xu ◽  
Xueyan Liu ◽  
Amir Tabaković ◽  
Erik Schlangen

Self-healing asphalt, which is designed to achieve autonomic damage repair in asphalt pavement, offers a great life-extension prospect and therefore not only reduces pavement maintenance costs but also saves energy and reduces CO2 emissions. The combined asphalt self-healing system, incorporating both encapsulated rejuvenator and induction heating, can heal cracks with melted binder and aged binder rejuvenation, and the synergistic effect of the two technologies shows significant advantages in healing efficiency over the single self-healing method. This study explores the fatigue life extension prospect of the combined healing system in porous asphalt. To this aim, porous asphalt (PA) test specimens with various healing systems were prepared, including: (i) the capsule healing system, (ii) the induction healing system, (iii) the combined healing system and (iv) a reference system (without extrinsic healing). The fatigue properties of the PA samples were characterized by an indirect tensile fatigue test and a four-point bending fatigue test. Additionally, a 24-h rest period was designed to activate the built-in self-healing system(s) in the PA. Finally, a damaging and healing programme was employed to evaluate the fatigue damage healing efficiency of these systems. The results indicate that all these self-healing systems can extend the fatigue life of porous asphalt, while in the combined healing system, the gradual healing effect of the released rejuvenator from the capsules may contribute to a better induction healing effect in the damaging and healing cycles.

2019 ◽  
Vol 3 ◽  
pp. 98-103 ◽  
Author(s):  
Shi Xu ◽  
Xueyan Liu ◽  
Amir Tabaković ◽  
Erik Schlangen

Induction healing is a proven technology which is able to improve the self-healing capacity of asphalt concrete. Healing is achieved via electromagnetic current produced by passing induction machine, where steel asphalt constituents heat up which in turn soften the bitumen in the asphalt layer, allowing it to flow and close cracks, repairing the damage. This paper reports on the study which investigated the influence of ageing on the healing capacity of Porous Asphalt (PA) concrete. Porous Asphalt concrete mix was prepared first,  then subjected to an accelerated (laboratory) ageing process using a ventilated oven. In order to further evaluate the induction healing efficiency of asphalt concrete,  Semi-circular bending (SCB) and healing cycles were performed on asphalt concrete specimens. The results show that with an increase of the ageing level of porous asphalt concrete, the induction healing efficiency decreases.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Hongshuai Gao ◽  
Quansheng Sun

There are many diseases in the deck pavement of long-span steel bridges under the action of vehicles, rainwater, and freezing. It is necessary to study a new type of pavement material with high waterproof property, light weight, and high bonding performance for steel deck pavement. Polyurethane cement composite (PUC) can be used for steel deck pavement. In order to find out the temperature effect on fatigue properties of PUC, the four-point bending fatigue test was carried out at different temperatures. In this paper, the optimum mix ratio of PUC was selected by compressive and flexural tests, and then the bending fatigue test was conducted under strain control mode. Under temperature and external force coupling condition, a method for predicting fatigue life of PUC is proposed by the combination of theoretical deduction and experimental research. The results show that the proposed formula can effectively describe the fatigue life and fatigue limit of PUC. Finally, compared with three different asphalt mixtures for steel deck pavement, it is found that the fatigue performance of polyurethane cement is better than that of asphalt mixture.


2015 ◽  
Vol 9 (3) ◽  
pp. 177-184 ◽  
Author(s):  
X. J. Ye ◽  
Y. Zhu ◽  
Y. C. Yuan ◽  
Y. X. Song ◽  
G. C. Yang ◽  
...  

Author(s):  
Waleed Abdelaziz Zeiada ◽  
Padmini P. Gudipudi ◽  
B. Shane Underwood ◽  
Mena I. Souliman

Fatigue cracking is one of the most critical types of distress in asphalt pavements and is due to actions of repetitive traffic loading over time. The fatigue life of asphalt concrete is often estimated from laboratory experiments where the performance depends directly on the test method, loading conditions, temperature, rest period, and aging in addition to the composition and properties of the mixture itself. The uniaxial fatigue test has become a popular method for developing constitutive models that describe the fatigue behavior of asphalt concrete mixture owing to the uniform states of stress across the specimen section. This study investigates the effect of the loading waveform (sinusoidal versus haversine) and rest period (continuous versus intermittent) on the laboratory fatigue life of asphalt concrete mixtures. The fatigue analysis was performed using the simplified viscoelastic continuum damage (S-VECD) approach where the damage characteristic (C-S) curves were established for all the cases, and then used to estimate the fatigue laws through simulated predictions. The proposed uniaxial fatigue test and analysis method were able to determine the fatigue life relationships of asphalt concrete mixture at different waveform and rest period conditions with a reduced testing time compared to other traditional testing and analysis methods. Overall, both rest period and waveform pattern were found to affect the laboratory fatigue life of asphalt concrete mixture. Model predictions show that pulse-rest loading yields an equivalent fatigue life to continuous loading at strain values that are approximately four times greater.


2020 ◽  
Vol 259 ◽  
pp. 120815 ◽  
Author(s):  
S. Xu ◽  
X. Liu ◽  
A. Tabaković ◽  
E. Schlangen

2006 ◽  
Vol 4 (13) ◽  
pp. 395-403 ◽  
Author(s):  
A.S Jones ◽  
J.D Rule ◽  
J.S Moore ◽  
N.R Sottos ◽  
S.R White

Self-healing polymers, based on microencapsulated dicyclopentadiene and Grubbs' catalyst embedded in the polymer matrix, are capable of responding to propagating fatigue cracks by autonomic processes that lead to higher endurance limits and life extension, or even the complete arrest of the crack growth. The amount of fatigue-life extension depends on the relative magnitude of the mechanical kinetics of crack propagation and the chemical kinetics of healing. As the healing kinetics are accelerated, greater fatigue life extension is achieved. The use of wax-protected, recrystallized Grubbs' catalyst leads to a fourfold increase in the rate of polymerization of bulk dicyclopentadiene and extends the fatigue life of a polymer specimen over 30 times longer than a comparable non-healing specimen. The fatigue life of polymers under extremely fast fatigue crack growth can be extended through the incorporation of periodic rest periods, effectively training the self-healing polymeric material to achieve higher endurance limits.


Author(s):  
Luis Lopez Martinez ◽  
Zuheir Barsoum ◽  
Anna Paradowska

The use of fatigue life improvement techniques and specifically ultrasonic peening treatment to extend the service life of offshore structures has become an accepted practice during the last five years. The understanding of the process as well as equipment’s upgrading for treatment in-situ including quality control and assurance have been developed up to a level that it has become a current practice in many parts of the world. However, the efficiency of the ultrasonic peening is strictly dependent on the deep understanding of significant fatigue parameters as weld defects, stress concentrations and residual stresses and their interaction. In this paper we attempt to present the current knowledge and the physical reasons why the ultrasonic peening treatment is able to improve the fatigue life of welded joints. The local weld geometry or stress concentration, weld imperfections as well as welding residual stresses are all modified and improved by the application of ultrasonic peening. Local weld geometry and weld process inherent weld imperfections are the factors primarily influencing the fatigue strength in welded joints. Comprehensive studies have been carried out during the last 20 years in order to detect and document the weld defects as well as to understand their origin and effect on the fatigue strength of welds. Analogous efforts have been dedicated to understand and document the influence of local weld geometries on the stress concentrations and its influence on endurance and structural integrity. Similarly, efforts have been done to understand the influence of the relaxation by external loads of the by the ultrasonic peening treatment induced compressive stresses. Fatigue test results of ultrasonic peening treated relevant weld details have been used to assess the potential life extension. The results showed four to six times fatigue life extension. The spectrum fatigue test was designed to confirm that relaxation by service loads of the induced compressive stresses during ultrasonic peening treatment would not diminish the benefit.


2009 ◽  
Vol 413-414 ◽  
pp. 757-764 ◽  
Author(s):  
Cheng Ming Lan ◽  
Hui Li

Based on fatigue test results of corroded wires obtained from dissection of actual parallel wire cables which were used on a certain domestic cable-stayed bridge, the fatigue properties of corroded parallel wire cable are investigated by the method of Monte Carlo simulation in this paper. The results of fatigue life and corrosion degree of corroded wire are presented. Comparisons between the original design information and fatigue test results, it can be seen that corrosions make the fatigue lives of wires decreasing sharply. The fatigue life of individual wire is described by Weibull distribution considered some useful parameters such as, stress range, mean stress, mean static strength and length effects. The effects of percentage of broken wire, cable S-N curve parameter on cable fatigue life are discussed. It can be seen that the cable fatigue lives are controlled by a small fraction of the cable wires with the shortest fatigue lives. Finally, the S-N curves of cable are calculated by Monte Carlo simulations based on the results of individual wire fatigue test, and compared with the results of cable fatigue test.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Nuha Salim Mashaan ◽  
Mohamed Rehan Karim ◽  
Mahrez Abdel Aziz ◽  
Mohd Rasdan Ibrahim ◽  
Herda Yati Katman ◽  
...  

Fatigue cracking is an essential problem of asphalt concrete that contributes to pavement damage. Although stone matrix asphalt (SMA) has significantly provided resistance to rutting failure, its resistance to fatigue failure is yet to be fully addressed. The aim of this study is to evaluate the effect of crumb rubber modifier (CRM) on stiffness and fatigue properties of SMA mixtures at optimum binder content, using four different modification levels, namely, 6%, 8%, 10%, and 12% CRM by weight of the bitumen. The testing undertaken on the asphalt mix comprises the dynamic stiffness (indirect tensile test), dynamic creep (repeated load creep), and fatigue test (indirect tensile fatigue test) at temperature of 25°C. The indirect tensile fatigue test was conducted at three different stress levels (200, 300, and 400 kPa). Experimental results indicate that CRM-reinforced SMA mixtures exhibit significantly higher fatigue life compared to the mixtures without CRM. Further, higher correlation coefficient was obtained between the fatigue life and resilient modulus as compared to permanent strain; thus resilient modulus might be a more reliable indicator in evaluating the fatigue life of asphalt mixture.


Sign in / Sign up

Export Citation Format

Share Document