State-of-the-Art: Fatigue Life Extension of Offshore Installations

Author(s):  
Luis Lopez Martinez ◽  
Zuheir Barsoum ◽  
Anna Paradowska

The use of fatigue life improvement techniques and specifically ultrasonic peening treatment to extend the service life of offshore structures has become an accepted practice during the last five years. The understanding of the process as well as equipment’s upgrading for treatment in-situ including quality control and assurance have been developed up to a level that it has become a current practice in many parts of the world. However, the efficiency of the ultrasonic peening is strictly dependent on the deep understanding of significant fatigue parameters as weld defects, stress concentrations and residual stresses and their interaction. In this paper we attempt to present the current knowledge and the physical reasons why the ultrasonic peening treatment is able to improve the fatigue life of welded joints. The local weld geometry or stress concentration, weld imperfections as well as welding residual stresses are all modified and improved by the application of ultrasonic peening. Local weld geometry and weld process inherent weld imperfections are the factors primarily influencing the fatigue strength in welded joints. Comprehensive studies have been carried out during the last 20 years in order to detect and document the weld defects as well as to understand their origin and effect on the fatigue strength of welds. Analogous efforts have been dedicated to understand and document the influence of local weld geometries on the stress concentrations and its influence on endurance and structural integrity. Similarly, efforts have been done to understand the influence of the relaxation by external loads of the by the ultrasonic peening treatment induced compressive stresses. Fatigue test results of ultrasonic peening treated relevant weld details have been used to assess the potential life extension. The results showed four to six times fatigue life extension. The spectrum fatigue test was designed to confirm that relaxation by service loads of the induced compressive stresses during ultrasonic peening treatment would not diminish the benefit.

Author(s):  
Yuri Kudryavtsev ◽  
Jacob Kleiman

The ultrasonic impact treatment (UIT) is relatively new and promising process for fatigue life improvement of welded elements and structures. In most industrial applications this process is known as ultrasonic peening (UP). The beneficial effect of UP is achieved mainly by relieving of tensile residual stresses and introducing of compressive residual stresses into surface layers of a material. The secondary factors in fatigue improvement by UP are decreasing of stress concentration in weld toe zones and enhancement of mechanical properties of the surface layers of the material. Fatigue testing of welded specimens showed that UP is the most efficient improvement treatment as compared with traditional techniques such as grinding, TIG-dressing, heat treatment, hammer peening and application of LTT electrodes. The developed computerized complex for UP was successfully applied for increasing the fatigue life and corrosion resistance of welded elements, elimination of distortions caused by welding and other technological processes, residual stress relieving, increasing of the hardness of the surface of materials. The UP could be effectively applied for fatigue life improvement during manufacturing, rehabilitation and repair of welded elements and structures. The areas/industries where the UP process was applied successfully include: Shipbuilding, Railway and Highway Bridges, Construction Equipment, Mining, Automotive, Aerospace. The results of fatigue testing of welded elements in as-welded condition and after application of UP are considered in this paper. It is shown that UP is the most effective and economic technique for increasing of fatigue strength of welded elements in materials of different strength. These results also show a strong tendency of increasing of fatigue strength of welded elements after application of UP with the increase in mechanical properties of the material used.


1998 ◽  
Vol 120 (2) ◽  
pp. 149-156 ◽  
Author(s):  
M. Higuchi ◽  
A. Nakagawa ◽  
K. Iida ◽  
M. Hayashi ◽  
T. Yamauchi ◽  
...  

The authors conducted fully reversed four-point bending fatigue tests on socket-welded joints 20 to 50 mm in nominal diameter, and rotating bending fatigue tests on socket-welded joints 20 mm in nominal diameter. S-N curves for 33 series of different types of specimens were obtained. Examination was made of the effects of various parameters listed in the forthcoming on fatigue strength such as steel types (carbon and stainless steels), diameter, pipe thickness (Sch), fillet shape, slip-on gap, and root defects. Bending fatigue test results indicated fatigue strength for socket-welded joints to be less for longer life regions than reported in the literature by Markl and George (1950). Fatigue strength for socket joints of 50 mm nominal diameter at 107 cycles of fatigue life was 46 MPa for carbon steel and 60 MPa for stainless steel with nominal bending stress on the pipe surface. Cracks generally originated from the toe when stress amplitude was high with shorter fatigue life and from the root when amplitude was small with longer life. Fatigue strength was greater for smaller diameter, larger Sch (thicker pipe wall), final welding pass on the toe of pipe side, and in the absence of a slip-on gap. From fatigue test results of socket joints with weld defects at the roots, an empirical equation for the relation of defect size with decrease in fatigue strength was established. Fatigue strength was found to decrease to 60 percent the original level for defect size 25 percent of leg length.


2021 ◽  
Author(s):  
Moritz Braun ◽  
Xiru Wang

The aim of this paper is to investigate the effects of weld toe grinding and weld profiling on the fatigue strength of welded joints and the main influencing factors. Thus, experimental test results of welds improved by different grinding techniques are reviewed. In total, 445 small- and full-scale fatigue test results of various weld types and steel grades with yield strengths up to 1100 MPa are analysed. The obtained improvements of two FAT classes correspond well with current guidelines; however, a new S–N curve slope of m = 4 is recommended—in line with proposals for other weld geometry improvement techniques.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2331
Author(s):  
Yixun Wang ◽  
Yuxiao Luo ◽  
Yuki Kotani ◽  
Seiichiro Tsutsumi

The authors wish to revise in the text of Appendix A, pages 19–21 [...]


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1249
Author(s):  
Yixun Wang ◽  
Yuxiao Luo ◽  
Yuki Kotani ◽  
Seiichiro Tsutsumi

The existing S-N curves by effective notch stress to assess the fatigue life of gusset welded joints can result in reduced accuracy due to the oversimplification of bead geometries. The present work proposes the parametric formulae of stress concentration factor (SCF) for as-welded gusset joints based on the spline model, by which the effective notch stress can be accurately calculated for fatigue resistance assessment. The spline model is also modified to make it applicable to the additional weld. The fatigue resistance of as-welded and additional-welded specimens is assessed considering the geometric effects and weld profiles. The results show that the error of SCFs by the proposed formulae is proven to be smaller than 5%. The additional weld can increase the fatigue life by as great as 9.4 times, mainly because the increasing weld toe radius and weld leg length lead to the smaller SCF. The proposed series of S-N curves, considering different SCFs, can be used to assess the welded joints with various geometric parameters and weld profiles.


Author(s):  
Yuriy Kudryavtsev ◽  
Jacob Kleiman

The ultrasonic impact treatment (UIT) is relatively new and promising process for fatigue life improvement of welded elements and structures. In most industrial applications this process is known as ultrasonic peening (UP). The beneficial effect of UIT/UP is achieved mainly by relieving of harmful tensile residual stresses and introducing of compressive residual stresses into surface layers of a material, decreasing of stress concentration in weld toe zones and enhancement of mechanical properties of the surface layers of the material. The UP technique is based on the combined effect of high frequency impacts of special strikers and ultrasonic oscillations in treated material. Fatigue testing of welded specimens showed that UP is the most efficient improvement treatment as compared with traditional techniques such as grinding, TIG-dressing, heat treatment, hammer peening and application of LTT electrodes. The developed computerized complex for UP was successfully applied for increasing the fatigue life and corrosion resistance of welded elements, elimination of distortions caused by welding and other technological processes, residual stress relieving, increasing of the hardness of the surface of materials. The UP could be effectively applied for fatigue life improvement during manufacturing, rehabilitation and repair of welded elements and structures. The areas/industries where the UP process was applied successfully include: Shipbuilding, Railway and Highway Bridges, Construction Equipment, Mining, Automotive, Aerospace. The results of fatigue testing of welded elements in as-welded condition and after application of UP are considered in this paper. It is shown that UP is the most effective and economic technique for increasing of fatigue strength of welded elements in materials of different strength. These results also show a strong tendency of increasing of fatigue strength of welded elements after application of UP with the increase in mechanical properties of the material used.


1942 ◽  
Vol 9 (2) ◽  
pp. A85-A90
Author(s):  
O. J. Horger ◽  
H. R. Neifert

Abstract The object of this paper is to present a correlation between residual stresses, obtained by heat-treatment, with fatigue values, determined from an investigation of full-size railroad axles. The axles tested were of both solid and tubular design and represent members which could be used under a car in actual service. It was found from these tests that high axle fatigue strength is associated with high surface residual compressive stresses, and lowest axle strength values with surface residual tensile stresses.


Author(s):  
Yun Huang ◽  
Shaochuan Li ◽  
Guijian Xiao ◽  
Benqiang Chen ◽  
Yi He ◽  
...  

Abstract As the core component of aero-engine, the service performance of aero-engine blade has an important influence on the engine’s reliability and safety performance. Existing studies have shown that machined surface characteristics affect the fatigue strength of components. However, current studies are all based on regular fatigue samples. The structure of blades different from fatigue samples, and the influence mechanism of structural differences on the service performance of blades is still unclear. In addition, the conventional fatigue test conditions are not representative for the blades’ actual service conditions, so it is difficult to realize the processing process for the service performance optimization. In this study, the aero-engine blades processed by abrasive belt grinding and the vibration fatigue test bench were used to explore the influence of surface roughness, surface texture, and surface residual stress on the fatigue performance of aero-engine blades under actual working conditions. The aero-engine blades were ground with different process parameters to obtain different single-factor surface characteristics. By comparing the vibration fatigue life of blades with different surface features, the influence degree of each surface feature on the fatigue life was explored. Results showed that surface roughness has the greatest influence on fatigue strength, followed by residual stress, and surface texture has the least influence on fatigue strength.


Sign in / Sign up

Export Citation Format

Share Document