scholarly journals Self-Template Synthesis of Nitrogen-Doped Hollow Carbon Nanospheres with Rational Mesoporosity for Efficient Supercapacitors

Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3619
Author(s):  
Xiang Zhao ◽  
Mu Zhang ◽  
Wei Pan ◽  
Rui Yang ◽  
Xudong Sun

Rational design and economic fabrication are essential to develop carbonic electrode materials with optimized porosity for high-performance supercapacitors. Herein, nitrogen-doped hollow carbon nanospheres (NHCSs) derived from resorcinol and formaldehyde resin are successfully prepared via a self-template strategy. The porosity and heteroatoms in the carbon shell can be adjusted by purposefully introducing various dosages of ammonium ferric citrate (AFC). Under the optimum AFC dosage (30 mg), the as-prepared NHCS-30 possesses hierarchical architecture, high specific surface area up to 1987 m2·g−1, an ultrahigh mesopore proportion of 98%, and moderate contents of heteroatoms, and these features endow it with a high specific capacitance of 206.5 F·g−1 at 0.2 A·g−1, with a good rate capability of 125 F·g−1 at 20 A·g−1 as well as outstanding electrochemical stability after 5000 cycles in a 6 M KOH electrolyte. Furthermore, the assembled NHCS-30 based symmetric supercapacitor delivers an energy density of 14.1 W·h·kg−1 at a power density of 200 W·kg−1 in a 6 M KOH electrolyte. This work provides not only an appealing model to study the effect of structural and component change on capacitance, but also general guidance to expand functionality electrode materials by the self-template method.

2017 ◽  
Vol 46 (10) ◽  
pp. 3276-3283 ◽  
Author(s):  
Juan Xu ◽  
Chaojie Ma ◽  
Jianyu Cao ◽  
Zhidong Chen

Novel core–shell nanostructured hollow carbon nanospheres@nickel cobalt double hydroxides (HCNs@NiCo-LDH) were fabricated by a facile hydrothermal method, exhibiting a high specific capacitance (2558 F g−1 at 1 A g−1) and outstanding rate capability.


2020 ◽  
Vol 8 (19) ◽  
pp. 9768-9775
Author(s):  
Jiayi Mao ◽  
Dechao Niu ◽  
Nan Jiang ◽  
Guangyu Jiang ◽  
Meiwan Chen ◽  
...  

A facile soft-template strategy is developed to construct high-nitrogen-doped and core–shell/mesoporous carbon nanospheres for high-rate and long-term stable sodium-ion batteries.


NANO ◽  
2016 ◽  
Vol 11 (11) ◽  
pp. 1650124 ◽  
Author(s):  
Yurong Yang ◽  
Min Qiu ◽  
Li Liu ◽  
Dan Su ◽  
Yanmei Pi ◽  
...  

Designed as an anode material for sodium ion batteries, porous nitrogen-doped hollow carbon nanospheres (N-HCS, [Formula: see text][Formula: see text]nm) are successfully synthesized via the mature template-assisted method using silica and dopamine as template and carbon precursor, respectively. For detailed characterization of Raman, FTIR and XPS results, it is revealed that N-doping can form a disordered carbon structure and induce a large number of topological defects on carbon outer wall. The N-HCS electrode exhibits excellent cycling stability and rate capability, delivering a satisfying capacity of 306[Formula: see text]mAh g[Formula: see text] over 600 cycles at a discharging rate of 0.05[Formula: see text]A g[Formula: see text] and an attainable capacity of 188[Formula: see text]mAh g[Formula: see text] even at a high discharging rate of 3.0[Formula: see text]A g[Formula: see text]. The excellent electrochemical performance of N-HCS can be attributed to the high content of pores. Moreover, the high content of pyridinic and graphitic N could facilitate the transfer of sodium ion and electron.


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 785
Author(s):  
Tai-Feng Hung ◽  
Tzu-Hsien Hsieh ◽  
Feng-Shun Tseng ◽  
Lu-Yu Wang ◽  
Chang-Chung Yang ◽  
...  

Rational design and development of the electrodes with high-mass loading yet maintaining the excellent electrochemical properties are significant for a variety of electrochemical energy storage applications. In comparison with the slurry-casted electrode, herein, a hierarchically porous activated carbon (HPAC) electrode with higher mass loading (8.3 ± 0.2 mg/cm2) is successfully prepared. The pouch-type symmetric device (1 cell) with the propylene carbonate-based electrolyte shows the rate capability (7.1 F at 1 mA/cm2 and 4.8 F at 10 mA/cm2) and the cycling stability (83% at 12,000 cycles). On the other hand, an initial discharge capacitance of 32.4 F and the capacitance retention of 96% after 30,000 cycles are delivered from a pouch-type symmetric supercapacitor (five cells). The corresponding electrochemical performances are attributed to the fascinating properties of the HPAC and the synergistic features of the resulting electrode.


2021 ◽  
Author(s):  
Eun Seop Yoon ◽  
Bong Gill Choi ◽  
Hwan-Jin Jeon

Abstract The development of energy storage electrode materials is important for enhancing the electrochemical performance of supercapacitors. Despite extensive research on improving electrochemical performance with polymer-based materials, electrode materials with micro/nanostructures are needed for fast and efficient ion and electron transfer. In this work, highly ordered phosphomolybdate (PMoO)-grafted polyaniline (PMoO-PAI) deposited onto Au hole-cylinder nanopillar arrays is developed for high-performance pseudocapacitors. The three-dimensional nanostructured arrays are easily fabricated by secondary sputtering lithography, which has recently gained attention and features a high resolution of 10 nm, a high aspect ratio greater than 20, excellent uniformity/accuracy/precision, and compatibility with large area substrates. These 10nm scale Au nanostructures with a high aspect ratio of ~30 on Au substrates facilitate efficient ion and electron transfer. The resultant PMoO-PAI electrode exhibits outstanding electrochemical performance, including a high specific capacitance of 114 mF/cm2, a high-rate capability of 88%, and excellent long-term stability.


2014 ◽  
Vol 2 (15) ◽  
pp. 5352-5357 ◽  
Author(s):  
Jinpeng Han ◽  
Guiyin Xu ◽  
Bing Ding ◽  
Jin Pan ◽  
Hui Dou ◽  
...  

The porous nitrogen-doped hollow carbon spheres derived from polyaniline are promising electrode materials for high performance supercapacitors due to their hierarchical porous structure and nitrogen-doping.


2018 ◽  
Vol 5 (1) ◽  
pp. 171186 ◽  
Author(s):  
Guofu Ma ◽  
Fengting Hua ◽  
Kanjun Sun ◽  
Enke Fenga ◽  
Hui Peng ◽  
...  

The electrochemical performance of an energy conversion and storage device like the supercapacitor mainly depends on the microstructure and morphology of the electrodes. In this paper, to improve the capacitance performance of the supercapacitor, the all-pseudocapacitive electrodes of lamella-like Bi 18 SeO 29 /BiSe as the negative electrode and flower-like Co 0.85 Se nanosheets as the positive electrode are synthesized by using a facile low-temperature one-step hydrothermal method. The microstructures and morphology of the electrode materials are carefully characterized, and the capacitance performances are also tested. The Bi 18 SeO 29 /BiSe and Co 0.85 Se have high specific capacitance (471.3 F g –1 and 255 F g –1 at 0.5 A g –1 ), high conductivity, outstanding cycling stability, as well as good rate capability. The assembled asymmetric supercapacitor completely based on the pseudocapacitive electrodes exhibits outstanding cycling stability (about 93% capacitance retention after 5000 cycles). Moreover, the devices exhibit high energy density of 24.2 Wh kg –1 at a power density of 871.2 W kg –1 in the voltage window of 0–1.6 V with 2 M KOH solution.


Sign in / Sign up

Export Citation Format

Share Document