scholarly journals Influence of the Laser Cladding Parameters on the Morphology, Wear and Corrosion Resistance of WC-Co/NiCrBSi Composite Coatings

Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5583
Author(s):  
Iosif Hulka ◽  
Ion D. Uțu ◽  
Diana Avram ◽  
Mircea L. Dan ◽  
Alexandru Pascu ◽  
...  

To enhance the sliding wear and corrosion behavior of steels with low carbon content, cermet composite coatings are usually deposited on their surface by various deposition processes. Laser cladding, compared to other deposition techniques such as electroplating, arc welding, and thermal spraying, has numerous advantages to produce such protective coatings. The paper presents the optimization of laser cladding deposition speed versus energy density in order to obtain WC-Co/NiCrBSi coatings with Ni-Al addition free of defects and reduced porosity deposited on low carbon steel substrate. The microstructure and chemical composition were investigated by SEM combined with EDX analysis while XRD was performed in order to examinate the phases within the coatings. In order to investigate the cladding speed influence on the coatings, hardness measurements, POD (pin on disk) wear tests and corrosion tests in 3.5% NaCl solution were carried out. The results showed that an optimal cladding speed has a crucial impact on the microstructure, composition, and hardness. It was found out that optimizing the cladding deposition speed proved to be effective in enhancing the sliding wear resistance and corrosion behavior by controlling the iron content within the coatings.

2016 ◽  
Vol 254 ◽  
pp. 290-295
Author(s):  
Iosif Hulka ◽  
Ion Dragoş Uţu ◽  
Viorel Aurel Şerban ◽  
Alexandru Pascu ◽  
Ionut Claudiu Roată

Laser cladding process is used to obtain protective coatings using as heat source a laser. This melts the substrate and the feedstock material to create a protective coating and provides a strong metallurgical bond with minimal dilution of the base material and reduced heat affected zone. In the present study a commercial NiCrSiFeB composition was deposited by laser cladding process using different parameters onto the surface of a steel substrate. The obtained coatings were investigated in terms of microstructure, hardness and wear behavior. The experimental results revealed that the laser power had a considerable influence on the wear resistance of NiCrSiFeB coatings.


2011 ◽  
Vol 214 ◽  
pp. 89-92
Author(s):  
Hao Chen ◽  
Jian Gao Yang ◽  
Mi Song Chen

The Fe-based composite coatings with RE oxides were prepared on low-carbon steel substrate by use of the plasma jet surface metallurgy, and the effect of RE on microstructure of coating was investigated. The result shows that the microstructure and properties with a proper amount of RE oxides are better than these of the coatings without RE oxides. In addition, the modifying effect of RE oxide on inclusions in metallurgical coating was studied by means of thermodynamics. The thermodynamics analysis shows that RE oxide (Ce2O3) can be reduced to RE by carbon, then the RE element can react with oxygen and sulfur to form the RE oxide-sulfide in metallurgical pool. As a result, the coating is purified and the solidification crack of coating can be restrained by deoxidization and desulphurization.


2011 ◽  
Vol 179-180 ◽  
pp. 253-256
Author(s):  
Hao Chen ◽  
Jian Gao Yang ◽  
Mi Song Chen

The Fe-based composite coatings were formed by plasma jet surface metallurgy using Fe, C, W, Cr and Al alloy powders on the low carbon steel. The morphology, microstructure, interface structure and the distribution of the in situ particles in the coatings were observed with optical microscope, scanning electron microscope and x-ray diffraction analysis. The results show that metallurgical bonding is obtained between coating and substrate, and the microstructure of coatings is mainly composed of γ-Fe, (Fe,Cr,W,Nb)7C3 and AlFe particles which are synthesized in stiu, are dispersivly distributed in the coatings. The micro-hardness gradually increased from bottom to the top of the coating, the maximum is 986 Hv0.1, about 4 times larger than that of the steel substrate.


2018 ◽  
Vol 7 (2) ◽  
pp. 93-98
Author(s):  
Rakesh Goyal ◽  
Buta Singh Sidhu ◽  
Vikas Chawla

Thermal spraying coating techniques have emerged as very effective surface protection technology to apply protective coatings for corrosion and wear resistance applications. These coatings have gained more importance in recent past. Advances in powder and wire production have resulted in development of various types of surface coatings with excellent wear and corrosion resistance properties. Because of excellent mechanical, thermal and electrical properties of Carbon Nanotubes, CNTs reinforced composite coatings are being developed for various applications, e.g. automotive, aerospace and sports equipment industry. It is observed that if properly deposited, these CNTs ceramic composite coatings can provide improved properties like wear and corrosion resistance. It has been found that CNTs composite coatings can be successfully deposited by thermal spraying techniques, and these coatings provide better performance than conventional coatings. This paper reviews the performance of such coatings developed by various researchers.


2015 ◽  
Vol 55 (7) ◽  
pp. 1460-1467
Author(s):  
Qianlin Wu ◽  
Wenge Li ◽  
Ning Zhong ◽  
Chunhua Fan ◽  
Boyang Liu

2016 ◽  
Vol 849 ◽  
pp. 677-682
Author(s):  
Hao Chen ◽  
Yang Rong Zhang ◽  
Zhu Huang

By plasma jet surface metallurgy, the thick composite coatings reinforced by in-situ TiC were produced on low carbon steel. Composition, microstructures and performance were characterized by scanning electron microscope (SEM), energy dispersive X-ray (EDX), X-ray diffraction (XRD), micro-hardness tester and wear tester. The results showed that the excellent bonding between the coating and the carbon steel substrate was achieved by strong metallurgical interface. The microstructure of the coating is mainly composed of γ-(Fe, Ni) dendrite, M23C6, CrB and in-situ synthesized TiC ceramic particle. Because of the particulate reinforcement, the dispersion strengthening, refinement strengthening, micro-hardness and wear resistant of Fe-based coating can be enhanced.


2013 ◽  
Vol 456 ◽  
pp. 382-387 ◽  
Author(s):  
Lin Ding ◽  
Ming Xi Li ◽  
Dao Ye Huang ◽  
Hong Yun Jang

In order to analyze temperature field and stress field of Co-based alloys laser cladding, the model of Co-based alloys laser cladding with preset-powder method has been made on low carbon steel substrate. The temperature field and stress field of laser cladding process was analyzed by SYSWELD software, and Experimental verification is done. The results showed that temperature field is appear to a trailing tail of comet, favorable metallurgy bonding with 12.3% dilution was obtained by scanning velocity was 4 mm/s. and instantaneous cooling rate of molten pool with 4 mm/s and 5 mm/s are increased to 1.47 times and 2.02 times of 3 mm/s. The transverse residual stress different nodes on the surface of coatings are always tensile stress, and it is almost steady, the maximum deformation is 0.34 mm at the edge of work-piece, these are consistent with experimental results. These results provide reference and guide to obtain high quality coatings.


2011 ◽  
Vol 266 ◽  
pp. 246-249
Author(s):  
Xin Mei Li ◽  
Ping Kuan Lu ◽  
Qiang Hu ◽  
Xiao Feng Dong ◽  
Bei Jing Fang

Low carbon steel was coated by hot-dipping into a molten bath containing Al-2 wt.%Mn. The phase composition, morphology and the erosion-corrosion behavior of the aluminide layer were characterized by XRD, OM, SEM and erosion-corrosion tester, respectively. The results show that the coatings are mainly composed of Al, FeAl3, Fe2Al5 and MnAl6 phase. The coatings consist of two-layer structure, i.e., toplayer Al-Mn alloy layer and tongue-like intermetallic compound. The thickness of the coating layer is about 800 μm and all the coating layers show good adhesion to the steel substrate. Compared with the pure Al coatings, the Al-Mn alloy coatings exhibit lower wear rate irrespective of the rotation speed. The hot-dipped Al-Mn coatings possess considerable erosion-corrosion resistance.


Sign in / Sign up

Export Citation Format

Share Document